版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省虎林市高级中学2024届高一数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,,,则等于()A. B.C. D.2.在中,满足,则这个三角形是()A.正三角形 B.等腰三角形C.锐角三角形 D.钝角三角形3.函数的零点所在的区间为()A.(-1,0) B.(0,)C.(,1) D.(1,2)4.若正实数满足,(为自然对数的底数),则()A. B.C. D.5.已知光线每通过一块特制玻璃板,强度要减弱,要使通过玻璃板光线强度减弱到原来的以下,则至少需要重叠玻璃版块数为(参考数据:)()A.4 B.5C.6 D.76.两圆和的位置关系是A.内切 B.外离C.外切 D.相交7.函数的定义域是()A. B.C. D.(0,4)8.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天9.若,则关于的不等式的解集是()A. B.或C.或 D.10.设,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________12.已知函数图像关于对称,当时,恒成立,则满足的取值范围是_____________13.已知函数,则函数零点的个数为_________14.的值是__________15.已知f(x)是定义在R上的奇函数且以6为周期,若f(2)=0,则f(x)在区间(0,10)内至少有________零点.16.函数的单调增区间为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,设(其中表示中的较小者).(1)在坐标系中画出函数的图像;(2)设函数的最大值为,试判断与1的大小关系,并说明理由.(参考数据:,,)18.设集合存在正实数,使得定义域内任意x都有.(1)若,证明;(2)若,且,求实数a的取值范围;(3)若,,且、求函数的最小值.19.降噪耳机主要有主动降噪耳机和被动降噪耳机两种.其中主动降噪耳机的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的反向声波来抵消噪声(如图所示).已知某噪声的声波曲线是,其中的振幅为2,且经过点.(1)求该噪声声波曲线的解析式以及降噪芯片生成的降噪声波曲线的解析式;(2)将函数图象上各点的横坐标变为原来的倍,纵坐标不变得到函数的图象.若锐角满足,求的值.20.已知函数为奇函数.(1)求实数a的值;(2)求的值.21.已知函数(Ⅰ)求函数的最小正周期(Ⅱ)求函数在上的最大值与最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】利用补集和并集的定义即可得解.【题目详解】,,,,,.故选:D.【题目点拨】本题主要考查集合的基本运算,熟练掌握补集和并集的定义是解决本题的关键,属于基础题.2、C【解题分析】由可知与符号相同,且均为正,则,即,即可判断选项【题目详解】由题,因为,所以与符号相同,由于在中,与不可能均为负,所以,,又因为,所以,即,所以,所以三角形是锐角三角形故选:C【题目点拨】本题考查判断三角形的形状,考查三角函数值的符号3、C【解题分析】应用零点存在性定理判断零点所在的区间即可.【题目详解】由解析式可知:,∴零点所在的区间为.故选:C.4、C【解题分析】由指数式与对数式互化为相同形式后求解【题目详解】由题意得:,,,①,又,,,和是方程的根,由于方程的根唯一,,由①知,,故选:C5、D【解题分析】设至少需要经过这样的块玻璃板,则,即,两边同时取以10为底的对数,可得,进而求解即可,需注意【题目详解】设至少需要经过这样的块玻璃板,则,即,所以,即,因为,所以,故选:D【题目点拨】本题考查利用对数的运算性质求解,考查指数函数的实际应用6、D【解题分析】根据两圆方程求解出圆心和半径,从而得到圆心距;根据得到两圆相交.【题目详解】由题意可得两圆方程为:和则两圆圆心分别为:和;半径分别为:和则圆心距:则两圆相交本题正确选项:【题目点拨】本题考查圆与圆的位置关系,关键是判断出圆心距和两圆半径之间的关系,属于基础题.7、C【解题分析】根据对数函数的单调性,结合二次根式的性质进行求解即可.【题目详解】由,故选:C8、B【解题分析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【题目详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【题目点拨】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.9、D【解题分析】判断出,再利用一元二次不等式的解法即可求解.【题目详解】因,所以,即.所以,解得.故选:D【题目点拨】本题考查了一元二次不等式的解法,考查了基本运算求解能力,属于简单题.10、B【解题分析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【题目详解】作出函数的图象,如图:结合图象可得:,故答案为:.12、【解题分析】由函数图像关于对称,可得函数是偶函数,由当时,恒成立,可得函数在上为增函数,从而将转化为,进而可求出取值范围【题目详解】因为函数图像关于对称,所以函数是偶函数,所以可转化为因为当时,恒成立,所以函数在上为增函数,所以,解得,所以取值范围为,故答案为:13、【解题分析】解方程,即可得解.【题目详解】当时,由,可得(舍)或;当时,由,可得.综上所述,函数零点的个数为.故答案为:.14、【解题分析】分析:利用对数运算的性质和运算法则,即可求解结果.详解:由.点睛:本题主要考查了对数的运算,其中熟记对数的运算法则和对数的运算性质是解答的关键,着重考查了推理与运算能力.15、6【解题分析】直接利用f(x)的奇偶性和周期性求解.【题目详解】因为f(x)是定义在R上奇函数且以6为周期,所以f(x)=-f即f-x所以f(x)的图象关于3,0对称,且f3则f9又f(0)=0,f(6)=0,又f(2)=0,所以f(8)=0,f(-2)=0,f(4)=0,所以f(x)在区间(0,10)内至少有6个零点.故答案为:6个零点16、.【解题分析】结合定义域由复合函数的单调性可解得结果.【题目详解】由得定义域为,令,则在单调递减,又在单调递减,所以的单调递增区间是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解题分析】(1)根据(其中表示中的较小者),即可画出函数的图像;(2)由题意可知,为函数与图像交点的横坐标,即,设,根据零点存在定理及函数在上单调递增,且为连续曲线,可得有唯一零点,再由函数在上单调递减,即可得证.试题解析:(1)作出函数的图像如下:(2)由题意可知,为函数与图像交点的横坐标,且,∴.设,易知即为函数零点,∵,,∴,又∵函数在上单调递增,且为连续曲线,∴有唯一零点∵函数在上单调递减,∴,即.18、(1)证明见解析;(2);(3).【解题分析】(1)利用判断(2),化简,通过判别式小于0,求出的范围即可(3)由,推出,得到对任意都成立,然后分离变量,通过当时,当时,分别求解最小值即可【题目详解】(1),(2)由,故;(3)由,即对任意都成立当时,;当时,;当时,综上:【题目点拨】思路点睛:本题考查函数新定义,重点是理解新定义的意义,本题第三问的关键是代入定义后转化为不等式恒成立问题,利用参变分离后求的取值范围,再根据,根据函数的单调性,讨论的取值,求得的最小值.19、(1),(2)【解题分析】(1)利用函数的振幅求得,代入求得的值,从而求得函数,利用对称性求得函数;(2)利用三角函数图像变换求得,由得,利用同角三角函数的基本关系式及两角和与差的三角公式求得结果.【小问1详解】解:由振幅为2知,,代入有,,而,而与关于轴对称,【小问2详解】由已知,,,而,故,.20、(1)(2)【解题分析】(1)由奇函数定义求;(2)代入后结合对数恒等式计算【题目详解】(1)因为函数为奇函数,所以恒成立,可得.(2)由(1)可得.所以.【题目点拨】本题考查函数的奇偶性,考查对数恒等式,属于基础题21、(1)(2)最大值1,最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《护理康复评定上》课件
- 2021届天津市杨村一中、宝坻一中等四校高一下学期期末联考化学试题
- 《综合医院评审概述》课件
- 小学四年级数学小数加减法计算题练习卷
- 《汽车车型解析》课件
- 电焊管道焊接技术
- 美食烹饪行业调味技巧培训实践
- 物流行业仓储管理心得总结
- 电影院服务员的服务技巧
- 印刷行业采购工作心得
- DL∕T 821-2017 金属熔化焊对接接头射线检测技术和质量分级
- DL∕ T 1195-2012 火电厂高压变频器运行与维护规范
- 小学五年级英语语法练习
- NB-T32004-2018光伏并网逆变器技术规范
- 领导与班子廉洁谈话记录(4篇)
- 衡阳市耒阳市2022-2023学年七年级上学期期末语文试题【带答案】
- 文库发布:strata手册
- 2024-2030年中国大棚蔬菜种植行业市场发展监测及投资前景展望报告
- 旋挖钻孔灌注桩施工技术规程
- 船舶安全停靠协议书
- 幼师课例分析报告总结与反思
评论
0/150
提交评论