新疆博尔塔拉蒙古自治州第五师高级中学2024届高一上数学期末联考模拟试题含解析_第1页
新疆博尔塔拉蒙古自治州第五师高级中学2024届高一上数学期末联考模拟试题含解析_第2页
新疆博尔塔拉蒙古自治州第五师高级中学2024届高一上数学期末联考模拟试题含解析_第3页
新疆博尔塔拉蒙古自治州第五师高级中学2024届高一上数学期末联考模拟试题含解析_第4页
新疆博尔塔拉蒙古自治州第五师高级中学2024届高一上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆博尔塔拉蒙古自治州第五师高级中学2024届高一上数学期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.2.如图,已知正方体中,异面直线与所成的角的大小是A.B.C.D.3.函数有()A.最大值 B.最小值C.最大值2 D.最小值24.圆的半径为,该圆上长为的弧所对的圆心角是A. B.C. D.5.如果直线和函数的图象恒过同一个定点,且该定点始终落在圆的内部或圆上,那么的取值范围是()A. B.C. D.6.一人打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶 B.两次都中靶C.两次都不中靶 D.只有一次中靶7.直线L将圆平分,且与直线平行,则直线L的方程是A.BC.D.8.中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是℃,环境温度是℃,则经过分钟后物体的温度℃将满足,其中是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,℃的水应大约冷却()分钟冲泡该绿茶(参考数据:,)A.3 B.3.6C.4 D.4.89.若幂函数的图象过点,则它的单调递增区间是()A.(0,+∞) B.[0,+∞)C.(-∞,+∞) D.(-∞,0)10.已知函数f(x)=Acos(ωx+φ)的图像如图所示,,则f(0)=()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与直线的距离是__________12.已知,均为锐角,,,则的值为______13.函数的反函数为___________14.已知函数,若方程有四个不同的解,且,则的最小值是______,的最大值是______.15.等于_______.16.函数的定义域为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点在坐标原点,始边与x轴正半轴重合,终边经过点.(1)求,;(2)求的值.18.设函数,其中,且.(1)求的定义域;(2)当时,函数图象上是否存在不同两点,使过这两点的直线平行于轴,并证明.19.已知二次函数.若当时,的最大值为4,求实数的值.20.榴弹炮是一种身管较短,弹道比较弯曲,适合于打击隐蔽目标和地面目标的野战炮,是地面炮兵的主要炮种之一.为中国共产党建党100周年献礼,某军工研究所对某类型榴弹炮进行了改良.如图所示,建立平面直角坐标系,x轴在地平面上,y轴垂直于地平面,单位长度为.改良后的榴弹炮位于坐标原点.已知该炮弹发射后的轨迹在方程表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标(1)求该类型榴弹炮的最大射程;(2)证明:该类型榴弹炮发射的高度不会超过21.已知函数(1)若是定义在上的偶函数,求实数的值;(2)在(1)条件下,若,求函数的零点

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【题目详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.2、C【解题分析】在正方体中,利用线面垂直的判定定理,证得平面,由此能求出结果【题目详解】如图所示,在正方体中,连结,则,,由线面垂直的判定定理得平面,所以,所以异面直线与所成的角的大小是故选C本题主要考查了直线与平面垂直判定与证明,以及异面直线所成角的求解,其中解答中牢记异面直线所成的求解方法和转化思想的应用是解答的关键,平时注意空间思维能力的培养,着重考查了推理与论证能力,属于基础题3、D【解题分析】分离常数后,用基本不等式可解.【题目详解】(方法1),,则,当且仅当,即时,等号成立.(方法2)令,,,.将其代入,原函数可化为,当且仅当,即时等号成立,此时.故选:D4、B【解题分析】由弧长公式可得:,解得.考点:弧度制.5、C【解题分析】由已知可得.再由由点在圆内部或圆上可得.由此可解得点在以和为端点的线段上运动.由表示以和为端点的线段上的点与坐标原点连线的斜率可得选项【题目详解】函数恒过定点.将点代入直线可得,即由点在圆内部或圆上可得,即.或.所以点在以和为端点的线段上运动表示以和为端点的线段上的点与坐标原点连线的斜率.所以,.所以故选:C【题目点拨】关键点点睛:解决本题类型的问题,关键在于由已知条件得出所满足的可行域,以及明确所表示的几何意义.6、C【解题分析】根据互斥事件定义依次判断各个选项即可.【题目详解】对于A,若恰好中靶一次,则“至少有一次中靶”与“至多有一次中靶”同时发生,不是互斥事件,A错误;对于B,若两次都中靶,则“至少有一次中靶”与“两次都中靶”同时发生,不是互斥事件,B错误;对于C,若两次都不中靶,则“至少有一次中靶”与“两次都不中靶”不能同时发生,是互斥事件,C正确;对于D,若只有一次中靶,则“至少有一次中靶”与“只有一次中靶”同时发生,不是互斥事件,D错误.故选:C.7、C【解题分析】圆的圆心坐标,直线L将圆平分,所以直线L过圆的圆心,又因为与直线平行,所以可设直线L的方程为,将代入可得所以直线L的方程为即,所以选C考点:求直线方程8、B【解题分析】根据题意求出k的值,再将θ=80℃,=100℃,=20℃代入即可求得t的值.【题目详解】由题可知:,冲泡绿茶时水温为80℃,故.故选:B.9、D【解题分析】设幂函数为y=xa,把点(2,)代入,求出a的值,从而得到幂函数的方程,再判断幂函数的单调递增区间.【题目详解】设y=xa,则=2a,解得a=-2,∴y=x-2其单调递增区间为(-∞,0)故选D.【题目点拨】本题考查了通过待定系数法求幂函数的解析式,以及幂函数的主要性质.10、C【解题分析】根据所给图象求出函数的解析式,即可求出.【题目详解】设函数的周期为,由图像可知,则,故ω=3,将代入解析式得,则,所以,令,代入解析式得,又因为,解得,,.故选:C.【题目点拨】本题考查根据三角函数的部分图象求函数的解析式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】12、【解题分析】直接利用两角的和的正切关系式,即可求出结果【题目详解】已知,均锐角,,,则,所以:,故故答案为【题目点拨】本题主要考查了三角函数关系式的恒等变换,以及两角和的正切关系式的应用,其中解答中熟记两角和的正切的公式,准确运算是解答的关键,主要考查学生的运算能力和转化能力,属于基础题型13、【解题分析】先求出函数的值域有,再得出,从而求得反函数.【题目详解】由,可得由,则,所以故答案为:.14、①.1②.4【解题分析】画出的图像,再数形结合分析参数的的最小值,再根据对称性与函数的解析式判断中的定量关系化简再求最值即可.【题目详解】画出的图像有:因为方程有四个不同的解,故的图像与有四个不同的交点,又由图,,故的取值范围是,故的最小值是1.又由图可知,,,故,故.故.又当时,.当时,,故.又在时为减函数,故当时取最大值.故答案为:(1).1(2).4【题目点拨】本题主要考查了数形结合求解函数零点个数以及范围的问题,需要根据题意分析交点间的关系,并结合函数的性质求解.属于难题.15、【解题分析】直接利用诱导公式即可求解.【题目详解】由诱导公式得:.故答案为:.16、【解题分析】令解得答案即可.【题目详解】令.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】(1)根据三角函数的定义,即可求出结果;(2)利用诱导公式对原式进行化简,代入,的值,即可求出结果.【题目详解】解:(1)因为角的终边经过点,由三角函数的定义知,(2)诱导公式,得.18、(1)当时,定义域为;当时,定义域为.(2)不存在,证明见解析.【解题分析】(1)首先根据题意得到,再分类讨论解不等式即可.(2)首先根据单调性定义得到函数在为增函数,从而得到函数图像上不存在不同两点,使过这两点的直线平行于轴.【题目详解】(1)由题知:,①当时,即,则,定义域为.②当时,即,则,定义域为.综上,当时,定义域为;当时,定义域为.(2)因为,所以函数的定义域为,任取,且,因为,所以,因为,所以,所以,即,所以,函数在为增函数,所以函数图象上不存在不同两点,使过这两点的直线平行于轴.19、或.【解题分析】分函数的对称轴和两种情况,分别建立方程,解之可得答案.【题目详解】二次函数的对称轴为直线,当,即时,当时,取得最大值4,,解得,满足;当,即时,当时,取得最大值4,,解得,满足.故:实数的值为或.20、(1)(2)证明见解析【解题分析】(1)解一元二次方程即可求得该类型榴弹炮的最大射程;(2)以二次函数在给

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论