版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省庆阳市第六中学高一数学第一学期期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义域为R的函数在单调递增,且为偶函数,若,则不等式的解集为()A. B.C. D.2.当时,函数和的图像只可能是()A. B.C. D.3.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是A. B.C. D.4.下列函数在其定义域内既是奇函数,又是增函数的是A. B.C. D.5.已知为偶函数,当时,,当时,,则满足不等式的整数的个数为()A.4 B.6C.8 D.106.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.下列命题不正确的是()A.若,则的最大值为1 B.若,则的最小值为4C.若,则的最小值为1 D.若,则8.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A B.C. D.9.设则的大小关系是A. B.C. D.10.已知函数的部分图像如图所示,则正数A值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正数x,y满足,则的最小值为_________12.已知点为角终边上一点,则______.13.将函数图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式为________.14.某高中校为了减轻学生过重的课业负担,提高育人质量,在全校所有的1000名高中学生中随机抽取了100名学生,了解他们完成作业所需要的时间(单位:h),将数据按照0.5,1,1,1.5,1.5,2,2,2.5,2.5,3,3,3.5,分成6组,并将所得的数据绘制成频率分布直方图(如图所示).由图中数据可知a=___________;估计全校高中学生中完成作业时间不少于3h的人数为15.已知A、B均为集合的子集,且,,则集合________16.下列命题中所有正确的序号是______________①函数最小值为4;②函数的定义域是,则函数的定义域为;③若,则的取值范围是;④若(,),则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值18.设函数(1)若函数的图象关于原点对称,求函数的零点;(2)若函数在,的最大值为,求实数的值19.已知向量m=(cos,sin),n=(2+sinx,2-cos),函数=m·n,x∈R.(1)求函数的最大值;(2)若且=1,求的值.20.已知函数,(1)当时,求函数的值域;(2)若恒成立,求实数的取值范围21.函数y=cosx+sinx的最小正周期、最大值、最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据题意,由函数为偶函数分析可得函数的图象关于直线对称,结合函数的单调性以及特殊值分析可得,解可得的取值范围,即可得答案【题目详解】解:根据题意,函数为偶函数,则函数的图象关于直线对称,又由函数在,单调递增且f(3),则,解可得:,即不等式的解集为;故选:D2、A【解题分析】由一次函数的图像判断出a、b的符号,结合指数函数的图像一一进行判断可得答案.【题目详解】解:A项,由一次函数的图像可知此时函数为减函数,故A项正确;B项,由一次函数的图像可知此时函数为增函数,故B项错误;C项,由一次函数的图像可知,此时函数为的直线,故C项错误;D项,由一次函数的图像可知,,此时函数为增函数,故D项错误;故选A.【题目点拨】本题主要考查指数函数的图像特征,相对简单,由直线得出a、b的范围对指数函数进行判断是解题的关键.3、C【解题分析】先由三角函数的最值得或,再由得,进而可得单调增区间.【题目详解】因为对任意恒成立,所以,则或,当时,,则(舍去),当时,,则,符合题意,即,令,解得,即的单调递增区间是;故选C.【题目点拨】本题主要考查了三角函数的图像和性质,利用三角函数的性质确定解析式,属于中档题.4、D【解题分析】分析:利用基本初等函数的单调性和奇偶性的定义,判定各选项中的函数是否满足条件即可.详解:对于A中,函数是定义域内的非奇非偶函数,所以不满足题意;对于B中,函数是定义域内的非奇非偶函数,所以不满足题意;对于C中,函数是定义域内的偶函数,所以不满足题意;对于D中,函数是定义域内的奇函数,也是增函数,所以满足题意,故选D.点睛:本题主要考查了基本初等函数的单调性与奇偶性的判定问题,其中熟记基本初等函数的单调性和奇偶性的判定方法是解答的关键,着重考查了推理与论证能力.5、C【解题分析】由时的解析式,可先求得不等式的解集.再根据偶函数性质,即可求得整个定义域内满足不等式的解集,即可确定整数解的个数.【题目详解】当时,,解得,所以;当时,,解得,所以.因为为偶函数,所以不等式的解集为.故整数的个数为8.故选:C【题目点拨】本题考查了不等式的解法,偶函数性质的应用,属于基础题.6、B【解题分析】根据充分必要性分别判断即可.【题目详解】若,则可设,则,,其中,,,即“”能推出“”;反之,若,,满足,但,,即“”推不出“”,所以“”是“”必要不充分条件,故选:B.7、D【解题分析】选项A、B、C通过给定范围求解对应的值域即可判断正误,选项D通过移向做差,化简合并,即可判断.【题目详解】对于A,若,则,即的最大值为1,故A正确;对于B,若,则,当且仅当,即时取等号,所以最小值为4,故B正确;对于C,若,则,即的最小值为1,故C正确;对于D,∵,,∴,故D不正确故选:D.8、C【解题分析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【题目详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C9、C【解题分析】由在区间是单调减函数可知,,又,故选.考点:1.指数函数的性质;2.函数值比较大小.10、B【解题分析】根据图象可得函数的周期,从而可求,再根据对称轴可求,结合图象过可求.【题目详解】由图象可得,故,而时,函数取最小值,故,故,而,故,因为图象过,故,故,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、8【解题分析】将等式转化为,再解不等式即可求解【题目详解】由题意,正实数,由(时等号成立),所以,所以,即,解得(舍),,(取最小值)所以的最小值为.故答案为:12、5【解题分析】首先求,再化简,求值.【题目详解】由题意可知.故答案为:5【题目点拨】本题考查三角函数的定义和关于的齐次分式求值,意在考查基本化简和计算.13、.【解题分析】由题意利用函数的图象变换规律,即可得出结论.【题目详解】将函数图象上所有的点向右平行移动个单位长度,可得函数为,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),可得函数为.故答案为:.14、①.0.1②.50【解题分析】利用频率之和为1可求a,由图求出完成作业时间不少于3h的频率,由频数=总数×【题目详解】由0.5×2a+0.3+0.4+0.5+0.6=1可求a=0.1;由图可知,全校高中学生中完成作业时间不少于3h的频率为0.5×0.1=0.05故答案为:0.1;5015、【解题分析】根据集合的交集与补集运算,即可求得集合A中的元素.再判定其他元素是否符合要求.【题目详解】A、B均为集合的子集若,则若,则假设,因为,则.所以,则必含有1,不合题意,所以同理可判断综上可知,故答案为:【题目点拨】本题考查了元素与集合的关系,集合与集合的交集与补集运算,对于元素的分析方法,属于基础题.16、③④【解题分析】利用基本不等式可判断①正误;利用抽象函数的定义域可判断②的正误;解对数不等式可判断③;构造函数,函数在上单调递减,结合,求得可判断④.详解】对于①,当时,,由基本不等式可得,当且仅当时,即当时,等号成立,但,故等号不成立,所以,函数,的最小值不是,①错误;对于②,若函数的定义域为,则有,解得,即函数的定义域为,②错误;对于③,若,所以当时,解得:,不满足;当时,解得:,所以的取值范围是,③正确;对于④,令,函数在上单调递减,由得,则,即,故④正确.故答案为:③④.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)π(2)最大值1,最小值-【解题分析】(1)根据正弦函数的性质即可求解;(2)将看作整体,根据正弦函数的图像即可求解.【小问1详解】f(x)=sin,所以f(x)的最小正周期为T==π;【小问2详解】因为x∈,所以2x+∈,根据正弦函数的图像可知:当2x+=,即x=时,f(x)取得最大值1,当2x+=,即x=时,f(x)取得最小值-;综上,最小正周期为,最大值为1,最小值为.18、(1)(2)【解题分析】(1)通过,求出.得到函数的解析式,解方程,求解函数的零点即可(2)利用换元法令,,,结合二次函数的性质求解函数的最值,推出结果即可【小问1详解】解:的图象关于原点对称,奇函数,,,即,.所以,所以,令,则,,又,,解得,即,所以函数的零点为【小问2详解】解:因为,,令,则,,,对称轴,当,即时,,;②当,即时,,(舍;综上:实数的值为19、(1)f(x)的最大值是4(2)-【解题分析】(1)先由向量的数量积坐标表示得到函数的三角函数解析式,再将其化简得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合条件的x的三角函数值,再有余弦的和角公式求的值【题目详解】(1)因为f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因为f(x)=1,所以sin=.又因为x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【题目点拨】本题考查平面向量的综合题20、(1);(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年茶叶收购与仓储管理合同2篇
- 水电安装工程2025年度合同书协议2篇
- 二零二五版快递物流服务质量监控与评估协议合同2篇
- 二零二五年电子供应链采购合同3篇
- 二零二五年度校园巴士运营管理合同范本3篇
- 二零二五年高端餐饮会所租赁承包合同范本3篇
- 2025年危险品运输及应急处理合同3篇
- 二零二五版物流仓储与新能源利用合同3篇
- 小学教师事业单位聘用合同(2篇)
- 二零二五年度绿色交通PPP特许经营权转让合同3篇
- 【大学课件】微型计算机系统
- (主城一诊)重庆市2025年高2025届高三学业质量调研抽测 (第一次)英语试卷(含答案)
- 2025关于标准房屋装修合同的范本
- 中国建材集团有限公司招聘笔试冲刺题2025
- 2024年马克思主义基本原理知识竞赛试题70题(附答案)
- 2024年湖北省中考物理真题含解析
- 荔枝病虫害防治技术规程
- 资金借贷还款协议
- 《实验性研究》课件
- 中国革命战争的战略问题(全文)
- 《阻燃材料与技术》课件全套 颜龙 第1讲 绪论 -第11讲 阻燃性能测试方法及分析技术
评论
0/150
提交评论