辽宁省辽油二高2024届高一数学第一学期期末检测模拟试题含解析_第1页
辽宁省辽油二高2024届高一数学第一学期期末检测模拟试题含解析_第2页
辽宁省辽油二高2024届高一数学第一学期期末检测模拟试题含解析_第3页
辽宁省辽油二高2024届高一数学第一学期期末检测模拟试题含解析_第4页
辽宁省辽油二高2024届高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省辽油二高2024届高一数学第一学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.英国物理学家和数学家牛顿提出了物体在常温环境下温度变化的冷却模型,设物体的初始温度为,环境温度为,其中,经过后物体温度满足(其中k为正常数,与物体和空气的接触状况有关).现有一个的物体,放在的空气中冷却,后物体的温度是,则()(参考数据:)A.1.17 B.0.85C.0.65 D.0.232.已知,若,则()A. B.C. D.3.在下列函数中,最小值为2的是()A.(且) B.C. D.4.对于两条不同的直线l1,l2,两个不同的平面α,β,下列结论正确的A.若l1∥α,l2∥α,则l1∥l2 B.若l1∥α,l1∥β,则α∥βC若l1∥l2,l1∥α,则l2∥α D.若l1∥l2,l1⊥α,则l2⊥α5.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.6.已知数列是首项,公比的等比数列,且,,成等差数列,则公比等于()A. B.C. D.7.将函数的图象向左平移个单位,再将图象上各点的纵坐标不变,横坐标变为原来的,那么所得图象的函数表达式为A. B.C. D.8.已知角的终边经过点P,则()A. B.C. D.9.幂函数的图像经过点,若.则()A.2 B.C. D.10.函数(且)的图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设向量不平行,向量与平行,则实数_________.12.设当时,函数取得最大值,则__________.13.当时,函数取得最大值,则___________.14.已知是第四象限角,,则______15.已知且,则的最小值为______________16.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为.(1)求的值和的单调递增区间;(2)令函数,求在区间上的值域.18.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值19.等腰直角三角形中,,为的中点,正方形与三角形所在的平面互相垂直(Ⅰ)求证:平面;(Ⅱ)若,求点到平面的距离20.已知函数是指数函数(1)求的解析式;(2)若,求的取值范围21.已知是方程的两根,且,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据所给公式,将所给条件中的温度相应代入,利用对数的运算求解即可.【题目详解】根据题意:的物体,放在的空气中冷却,后物体的温度是,有:,所以,故,即,故选:D.2、C【解题分析】设,求出,再由求出.【题目详解】设,因为所以,又,所以,所以.故选:C.3、C【解题分析】根据基本不等式的使用条件,对四个选项分别进行判断,得到答案.【题目详解】选项A,当时,,所以最小值为不正确;选项B,因为,所以,所以,当且仅当,即时等号成立,而,所以等号不成立,所以不正确;选项C,因为,所以,当且仅当,即时,等号成立,所以正确;选项D,因为,所以,所以,当且仅当,即时,等号成立,而,所以不正确.故选:C.【题目点拨】本题考查基本不等式求和的最小值,基本不等式的使用条件,属于简单题.4、D【解题分析】详解】A.若l1∥α,l2∥α,则两条直线可以相交可以平行,故A选项不正确;B.若l1∥α,l1∥β,则α∥β,当两条直线平行时,两个平面可以是相交的,故B不正确;C.若l1∥l2,l1∥α,则l2∥α,有可能在平面内,故C不正确;D.若l1∥l2,l1⊥α,则l2⊥α,根据课本的判定定理得到是正确的.故答案为D.5、D【解题分析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.6、A【解题分析】由等差数列性质得,由此利用等比数列通项公式能求出公比【题目详解】数列是首项,公比的等比数列,且,,成等差数列,,,解得(舍或故选A【题目点拨】本题考查等比数列的公比的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用7、B【解题分析】将函数的图象向左平移个单位后所得图象对应的的解析式为;再将图象上各点纵坐标不变,横坐标变为原来的,所得图象对应的解析式为.选B8、B【解题分析】根据三角函数的定义计算,即可求得答案.【题目详解】角终边过点,,,故选:B.9、D【解题分析】利用待定系数法求出幂函数的解析式,再求时的值详解】解:设幂函数,其图象经过点,,解得,;若,则,解得故选:D10、D【解题分析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误二、填空题:本大题共6小题,每小题5分,共30分。11、-2【解题分析】因为向量与平行,所以存在,使,所以,解得答案:12、【解题分析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【题目详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.13、##【解题分析】由辅助角公式,正弦函数的性质求出,,再根据两角和的正切和公式,诱导公式求.【题目详解】(其中,),当时,函数取得最大值∴,,即,,所以,.故答案为:.14、【解题分析】利用同角三角函数的基本关系求出的值,在利用诱导公式可求得结果.【题目详解】因为是第四象限角,,则,所以,.故答案为:.15、9【解题分析】因为且,所以取得等号,故函数的最小值为9.,答案为9.16、6【解题分析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【题目详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【题目点拨】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),函数单调递增区间:,;(2).【解题分析】(1)利用函数的周期求解,得到函数的解析式,然后求解函数的单调增区间;(2)由题得,再利用三角函数的图象和性质求解.【题目详解】解:(1)函数的最小正周期.可得,,所以,所以函数,由,,所以,,可得,,所以函数单调递增区间:,(2)由题得,因为所以所以所以函数在区间上的值域为.18、(1);(2);(3)见解析【解题分析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后通过在的图像上以及与、与的关系即可得到函数的解析式;(3)首先可通过三个函数的解析式得出函数的解析式,再通过函数的单调性得出函数的单调性,最后根据函数的单调性即可计算出函数的最值【题目详解】(1)当点的坐标为,点的坐标为,因为点也在图像上,所以,即;(2)设函数上,则有,即,而在的图像上,所以,代入得;(3)因为、、,所以,,令函数,因为当时,函数单调递减,所以当时,函数单调递增,,,综上所述,最小值为,最大值为【题目点拨】本题考查了对数函数的相关性质,考查了对数的运算、对数函数的单调性以及最值,考查函数方程思想以及化归与转化思想,体现了基础性与综合性,提高了学生的逻辑推理能力19、(Ⅰ)见解析;(Ⅱ).【解题分析】(Ⅰ)连,交于,连,由中位线定理即可证明平面.(Ⅱ)根据,由等体积法即可求得点到平面的距离.【题目详解】(Ⅰ)连,设交于,连,如下图所示:因为为的中点,为的中点,则面,不在面内,所以平面(Ⅱ)因为等腰直角三角形中,则,又因为所以平面则设点到平面的距离为.注意到,由,代入可得:,解得.即点到平面的距离为.【题目点拨】本题考查了直线与平面平行的判定,等体积法求点到平面距离的方法,属于中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论