2024届辽宁省大连海湾高级中学高一数学第一学期期末质量检测试题含解析_第1页
2024届辽宁省大连海湾高级中学高一数学第一学期期末质量检测试题含解析_第2页
2024届辽宁省大连海湾高级中学高一数学第一学期期末质量检测试题含解析_第3页
2024届辽宁省大连海湾高级中学高一数学第一学期期末质量检测试题含解析_第4页
2024届辽宁省大连海湾高级中学高一数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省大连海湾高级中学高一数学第一学期期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数则其在区间上的大致图象是()A. B.C. D.2.已知集合,则=A. B.C. D.3.已知函数,,若对任意,总存在,使得成立,则实数取值范围为A. B.C. D.4.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且5.设命题,使得,则命题为的否定为()A., B.,使得C., D.,使得6.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把郑铁饼者张开的双臂近似看成一张拉满弦的“弓”,郑铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则郑铁饼者双手之间的距离约为()A.1.01米 B.1.76米C.2.04米 D.2.94米7.设,则()A. B.C. D.8.已知角的终边经过点,则A. B.C. D.9.有三个函数:①,②,③,其中图像是中心对称图形的函数共有().A.0个 B.1个C.2个 D.3个10.已知三个变量随变量变化数据如下表:则反映随变化情况拟合较好的一组函数模型是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数,的图象恒过定点P,则P点的坐标是_____.12.设函数,若实数满足,且,则的取值范围是_______________________13.在某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是__________(填写序号)①平均数;②标准差;③平均数且极差小于或等于2;④平均数且标准差;⑤众数等于1且极差小于或等于414.设向量,,则__________15.的值等于____________16.若函数的图象关于直线对称,则的最小值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设两个非零向量与不共线,(1)若,,,求证:A,B,D三点共线;(2)试确定实数k,使和共线18.如图,在直三棱柱ABC-A1B1C1中,三角形ABC为等腰直角三角形,AC=BC=2(1)求证:AC1//(2)二面角B119.某行业计划从新的一年2020年开始,每年的产量比上一年减少的百分比为,设n年后(2020年记为第1年)年产量为2019年的a倍.(1)请用a,n表示x.(2)若,则至少要到哪一年才能使年产量不超过2019年的25%?参考数据:,.20.已知集合,集合.(1)求.(2)求,求的取值范围.21.某市有A、B两家羽毛球球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内含20小时每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时设在A俱乐部租一块场地开展活动x小时的收费为元,在B俱乐部租一块场地开展活动x小时的收费为元,试求与的解析式;问该企业选择哪家俱乐部比较合算,为什么?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】为奇函数,去掉A,B;当时,所以选D.点睛:(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去,即将函数值的大小转化自变量大小关系2、B【解题分析】由题意,所以.故选B考点:集合的运算3、B【解题分析】分别求出在的值域,以及在的值域,令在的最大值不小于在的最大值,得到的关系式,解出即可.【题目详解】对于函数,当时,,由,可得,当时,,由,可得,对任意,,对于函数,,,,对于,使得,对任意,总存在,使得成立,,解得,实数的取值范围为,故选B【题目点拨】本题主要考查函数的最值、全称量词与存在量词的应用.属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.4、D【解题分析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【题目详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【题目点拨】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..5、C【解题分析】根据给定条件由含有一个量词的命题的否定方法直接写出p的否定判断作答.【题目详解】依题意,命题是存在量词命题,其否定是全称量词命题,所以命题的否定是:,.故选:C6、B【解题分析】先由题意求出“弓”所在的弧长所对的圆心角,然后利用三角函数求弦长【题目详解】由题意得,“弓”所在的弧长为,所以其所对的圆心角的绝对值为,所以两手之间的距离故选:B7、A【解题分析】利用中间量隔开三个值即可.【题目详解】∵,∴,又,∴,故选:A【题目点拨】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.8、D【解题分析】由任意角的三角函数定义列式求解即可.【题目详解】由角终边经过点,可得.故选D.【题目点拨】本题主要考查了任意角三角函数的定义,属于基础题.9、C【解题分析】根据反比例函数的对称性,图象变换,然后结合中心对称图形的定义判断【题目详解】,显然函数的图象是中心对称图形,对称中心是,而的图形是由的图象向左平行3个单位,再向下平移1个单位得到的,对称中心是,由得,于是不是中心对称图形,,中间是一条线段,它关于点对称,因此有两个中心对称图形故选:C10、B【解题分析】根据幂函数、指数函数、对数函数增长速度的不同可得结果.【题目详解】从题表格可以看出,三个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,呈指数函数变化,变量的增长速度最慢,对数型函数变化,故选B【题目点拨】本题主要考查幂函数、指数函数、对数函数模型的应用,意在考查综合利用所学知识解决问题的能力,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】令,解得,且恒成立,所以函数的图象恒过定点;故填.12、【解题分析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【题目详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:13、③⑤【解题分析】按照平均数、极差、方差依次分析各序号即可.【题目详解】连续7天新增病例数:0,0,0,0,2,6,6,平均数是2<3,①错;连续7天新增病例数:6,6,6,6,6,6,6,标准差是0<2,②错;平均数且极差小于或等于2,单日最多增加4人,若有一日增加5人,其他天最少增加3人,不满足平均数,所以单日最多增加4人,③对;连续7天新增病例数:0,3,3,3,3,3,6,平均数是3且标准差小于2,④错;众数等于1且极差小于或等于4,最大数不会超过5,⑤对.故答案为:③⑤.14、【解题分析】,故,故填.15、2【解题分析】利用诱导公式、降次公式进行化简求值.【题目详解】.故答案为:16、【解题分析】根据正弦函数图象的对称性求解.【题目详解】依题意可知,得,所以,故当时,取得最小值.故答案为:.【题目点拨】本题考查三角函数的对称性.正弦函数的对称轴方程是,对称中心是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】(1)转化为证明向量,共线,即可证明三点共线;(2)由共线定理可知,存在实数λ,使,利用向量相等,即可求解值.【题目详解】(1)证明:,,,,共线,又∵它们有公共点B,∴A,B,D三点共线(2)和共线,∴存在实数λ,使,即,.,是两个不共线的非零向量,,.18、(1)见解析(2)45°【解题分析】1设BC1∩B1C=E,连接ED,则2推导出CD⊥AB,BB1⊥CD,从而CD⊥平面ABB1A1,进而CD⊥B1解析:(1)在直三棱柱ABC-A1B则E为BC1的中点,连接∵D为AB的中点,∴ED//AC,又∵ED⊂平面CDB1,AC∴AC1//(2)∵ΔABC中,AC=BC,D为AB中点,∴CD⊥AB,又∵BB1⊥平面ABC,CD⊂∴BB1⊥CD,又AB∩BB1∵B1D⊂平面ABB1A1,AB⊂平面∴∠B1DB∵ΔABC中,AB=2,∴BD=1,RtΔB1BD中,∴二面角B1-CD-B19、(1)(2)2033【解题分析】(1)每年的产量比上一年减少的百分比为,那么n年后的产量为2019年的,即得;(2)将代入(1)中得到式子,解n,n取正整数。【题目详解】(1)依题意得,即,即.(2)由题得,即,则,即,则,又,,∴n的最小值为14.故至少要到2033年才能使年产能不超过2019年25%.【题目点拨】本题是一道函数实际应用题,注意求n时,n表示某一年,要取整数。20、(1)(2)【解题分析】(1)由不等式,求得,即可求解;(2)由,得到,列出不等式组,即可求解.【小问1详解】解:由,即,可得,可得集合.【小问2详解】解:因为,且集合,又因为,即,当时,即,可得,此时满足;当时,则满足,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论