2024届江苏省镇江市丹徒高级中学高一上数学期末检测模拟试题含解析_第1页
2024届江苏省镇江市丹徒高级中学高一上数学期末检测模拟试题含解析_第2页
2024届江苏省镇江市丹徒高级中学高一上数学期末检测模拟试题含解析_第3页
2024届江苏省镇江市丹徒高级中学高一上数学期末检测模拟试题含解析_第4页
2024届江苏省镇江市丹徒高级中学高一上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省镇江市丹徒高级中学高一上数学期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若是钝角,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角2.在长方体中,,,则该长方体的外接球的表面积为A. B.C. D.3.已知函数,函数有三个零点,则取值范围是A. B.C. D.4.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.20135.某同学参加研究性学习活动,得到如下实验数据:x1.02.04.08.0y0.010.992.023现欲从理论上对这些数据进行分析并预测,则下列模拟函数合适的是()A. B.C. D.6.下列函数中与函数相等的是A. B.C. D.7.是上的奇函数,满足,当时,,则()A. B.C. D.8.当时,在同一坐标系中,函数与的图像是()A. B.C. D.9.已知命题:角为第二或第三象限角,命题:,命题是命题的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件10.若角的终边过点,则等于A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数是R上的减函数,则实数a的取值范围是___12.方程的解为__________13.已知函数是定义在上的奇函数,当时,,则__________.14.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是_______15.若函数满足:对任意实数,有且,当[0,1]时,,则[2017,2018]时,______________________________16.等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某种产品的成本是50元/件,试销阶段每件产品的售价(单位:元)与产品的日销售量(单位:件)之间有如下表所示的关系:/元60708090/件80604020(1)根据以上表格中的数据判断是否适合作为与的函数模型,并说明理由;(2)当每件产品的售价为多少时日利润(单位:元)最大,并求最大值.18.已知函数.(1)判断并证明的奇偶性;(2)若,求的取值范围.19.将函数(且)的图象向左平移1个单位,再向上平移2个单位,得到函数的图象,(1)求函数的解析式;(2)设函数,若对一切恒成立,求实数的取值范围;(3)若函数在区间上有且仅有一个零点,求实数的取值范围.20.已知n为正整数,集合Mn=x1,x2,⋅⋅⋅,xnx(1)当n=3时,设α=0,1,0,β=1,0,0,写出α-(2)若集合S满足S⊆M3,且∀α,β∈S,dα,β=2,求集合(3)若α,β∈Mn,且dα,β=2,任取γ∈21.已知函数(1)若是定义在上的偶函数,求实数的值;(2)在(1)条件下,若,求函数的零点

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由求出,结合不等式性质即可求解.【题目详解】,,,在第四象限.故选:D2、B【解题分析】由题求出长方体的体对角线,则外接球的半径为体对角线的一半,进而求得答案【题目详解】由题意可得,长方体体对角线为,则该长方体的外接球的半径为,因此,该长方体的外接球的表面积为.【题目点拨】本题考查外接球的表面积,属于一般题3、D【解题分析】根据题意做出函数在定义域内的图像,将函数零点转化成函数与函数图像交点问题,结合图形即可求解.【题目详解】解:根据题意画出函数的图象,如图所示:函数有三个零点,等价于函数与函数有三个交点,当直线位于直线与直线之间时,符合题意,由图象可知:,,所以,故选:D.【题目点拨】根据函数零点的情况求参数有三种常用方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.4、B【解题分析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为5、A【解题分析】由表中数据的增大趋势和函数的单调性判断可得选项.【题目详解】解:由表中的数据看出:y随x的增大而增大,且增大的幅度越来越小,而函数,在的增大幅度越来越大,函数呈线性增大,只有函数与已知数据的增大趋势接近,故选:A.6、C【解题分析】对于选项A,D对应的函数与函数的对应法则不同,对于选项B对应的函数与函数的定义域不同,对于选项C对应的函数与函数的定义域、对应法则相同,得解.【题目详解】解:对于选项A,等价于,即A不符合题意,对于选项B,等价于,即B不符合题意,对于选项C,等价于,即C符合题意,对于选项D,,显然不符合题意,即D不符合题意,故选C.【题目点拨】本题考查了同一函数的判断、函数的对应法则及定义域,属基础题.7、D【解题分析】根据函数的周期性与奇偶性可得,结合当时,,得到结果.【题目详解】∵∴的周期为4,∴,又是上奇函数,当时,,∴,故选:D【题目点拨】本题考查函数的周期性与奇偶性,解题的关键是根据函数的性质将未知解析式的区间上函数的求值问题转化为已知解析式的区间上来求,本题考查了转化化归的能力及代数计算的能力.8、D【解题分析】根据指数型函数和对数型函数单调性,判断出正确选项.【题目详解】由于,所以为上的递减函数,且过;为上的单调递减函数,且过,故只有D选项符合.故选:D.【题目点拨】本小题主要考查指数型函数、对数型函数单调性判断,考查函数图像的识别,属于基础题.9、D【解题分析】利用切化弦判断充分性,根据第四象限的角判断必要性.【题目详解】当角为第二象限角时,,所以,当角为第三象限角时,,所以,所以命题是命题的不充分条件.当时,显然,当角可以为第四象限角,命题是命题的不必要条件.所以命题是命题的既不充分也不必要条件.故选:D10、C【解题分析】角终边过点,则,所以.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】按照指数函数的单调性及端点处函数值的大小关系得到不等式组,解不等式组即可.【题目详解】由题知故答案为:.12、【解题分析】令,则解得:或即,∴故答案为13、12【解题分析】由函数的奇偶性可知,代入函数解析式即可求出结果.【题目详解】函数是定义在上的奇函数,,则,.【题目点拨】本题主要考查函数的奇偶性,属于基础题型.14、【解题分析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.考点:圆锥的侧面展开图与体积.15、【解题分析】由题意可得:,则,据此有,即函数的周期为,设,则,据此可得:,若,则,此时.16、【解题分析】分别计算出的长度,然后结合二面角的求法,找出二面角,即可.【题目详解】结合题意可知,所以,而发现所以,结合二面角找法:如果两平面内两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角,故为所求的二面角,为【题目点拨】本道题目考查了二面角的求法,寻求二面角方法:两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)适合,理由见解析.(2)当每件产品售价为75元时日利润最大,且最大值为1250.【解题分析】(1)把,分别代入,求得,再代入检验成立;(2)设日利润为(单位:元),由(1)求得,根据二次函数的性质可求得最大值.【小问1详解】解:适合,理由如下:把,分别代入,得解得则,把,分别代入,检验成立.【小问2详解】解:设日利润为(单位:元),则,当时,,则当每件产品的售价为75元时日利润最大,且最大值为1250.18、(1)是奇函数,证明见解析(2)【解题分析】(1)先求函数的定义域,再利用奇偶性的定义进行判定;(2)先解关于的一元二次不等式得到,再利用对数函数的单调性转化为分式不等式进行求解.【小问1详解】解:是奇函数,证明如下:令,即,解得,即的定义域为;对于任意,都有,且,即,所以是奇函数.【小问2详解】解:因为,所以,则,即,所以,因为,所以,所以可化为,解得,即的取值范围为.19、(1)(2)(3)【解题分析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式,可得对一切恒成立,再由二次函数的性质可得所求范围;(3)将化简为,由题意可得只需在区间,,上有唯一解,利用图象,数形结合求得答案.【小问1详解】将函数且的图象向左平移1个单位,得到的图象,再向上平移2个单位,得到函数的图象,即:;【小问2详解】函数,,若对一切恒成立,则对一切恒成立,由在递增,可得,所以,即的取值范围是,;【小问3详解】关于的方程且,故函数在区间上有且仅有一个零点,等价于在区间上有唯一解,作出函数且的图象,如图示:当时,方程的解有且只有1个,故实数p的取值范围是.20、(1)α-β=1,1,0(2)最大值是4,此时S=0,0,0,(3)2【解题分析】(1)根据定义直接求解即可;(2)根据定义,结合反证法进行求解即可;(3)根据定义,结合绝对值的性质进行证明即可.【小问1详解】α-β=1,1,0,【小问2详解】最大值是4.此时S=0,0,0,若还有第5个元素,则必有1,0,0,0,1,1和0,0,1,1,1,0和0,1,0,1,0,1和1,1【小问3详解】证明:设α

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论