2024届北京市西城区北京第四十四中学高一上数学期末质量检测模拟试题含解析_第1页
2024届北京市西城区北京第四十四中学高一上数学期末质量检测模拟试题含解析_第2页
2024届北京市西城区北京第四十四中学高一上数学期末质量检测模拟试题含解析_第3页
2024届北京市西城区北京第四十四中学高一上数学期末质量检测模拟试题含解析_第4页
2024届北京市西城区北京第四十四中学高一上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市西城区北京第四十四中学高一上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)2.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a3.命题P:“,”的否定为A., B.,C., D.,4.化简:()A B.C. D.5.甲、乙两人在相同的条件下各打靶6次,每次打靶的情况如图所示(虚线为甲的折线图),则以下说法错误的是A.甲、乙两人打靶的平均环数相等B.甲的环数的中位数比乙的大C.甲的环数的众数比乙的大D.甲打靶的成绩比乙的更稳定6.根据表格中的数据,可以判定函数的一个零点所在的区间为.A. B.C. D.7.已知是奇函数,且满足,当时,,则在内是A.单调增函数,且 B.单调减函数,且C.单调增函数,且 D.单调减函数,且8.已知函数,则,()A.4 B.3C. D.9.下列各对角中,终边相同的是()A.和 B.和C.和 D.和10.下列函数中最小值为6的是()A. B.C D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数是定义在上的奇函数,且满足,当时,,则__________.12.已知函数,若函数恰有三个不同的零点,则实数k的取值范围是_____________13.下列命题中正确的是__________.(填上所有正确命题的序号)①若,,则;②若,,则;③若,,则;④若,,,,则14.在上,满足的取值范围是______.15.已知点,,则以线段为直径的圆的标准方程是__________16.若定义域为的函数满足:对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,则m的最大值为______.(是自然对数的底)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且最小正周期为.(1)求的单调增区间;(2)若关于的方程在上有且只有一个解,求实数的取值范围.18.已知圆,点是直线上的一动点,过点作圆的切线,切点为.(1)当切线的长度为时,求线段PM长度.(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(3)求线段长度的最小值19.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点.(1)求;(2)求的值.20.如图,弹簧挂着的小球做上下振动,它在(单位:)时相对于平衡位置(静止时的位置)的高度(单位:)由关系式确定,其中,,.在一次振动中,小球从最高点运动至最低点所用时间为.且最高点与最低点间的距离为(1)求小球相对平衡位置高度(单位:)和时间(单位:)之间的函数关系;(2)小球在内经过最高点的次数恰为50次,求的取值范围21.已知函数,(1)求函数的定义域;(2)试讨论关于x的不等式的解集

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】计算出,并判断符号,由零点存在性定理可得答案.【题目详解】因为,,所以根据零点存在性定理可知函数的零点所在区间是,故选:B【题目点拨】本题考查了利用零点存在性定理判断函数的零点所在区间,解题方法是计算区间端点的函数值并判断符号,如果异号,说明区间内由零点,属于基础题.2、C【解题分析】分别求出的范围即可比较.【题目详解】,,,,,.故选:C.3、B【解题分析】“全称命题”的否定是“特称命题”根据全称命题的否定写出即可【题目详解】解:命题P:“,”的否定是:,故选B【题目点拨】本题考察了“全称命题”的否定是“特称命题”,属于基础题.4、D【解题分析】利用三角函数诱导公式、同角三角函数的基本关系化简求值即可.【题目详解】,故选:D5、C【解题分析】甲:8,6,8,6,9,8,平均数为7.5,中位数为8,众数为8;乙:4,6,8,7,10,10,平均数为7.5,中位数7.5,众数为10;所以可知错误的是C.由折线图可看出乙的波动比甲大,所以甲更稳定.故选C6、D【解题分析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,

这个c也就是方程f(x)=0的根.由此可判断根所在区间.7、A【解题分析】先根据f(x+1)=f(x﹣1)求出函数周期,然后根据函数在x∈(0,1)时上的单调性和函数值的符号推出在x∈(﹣1,0)时的单调性和函数值符号,最后根据周期性可求出所求【题目详解】∵f(x+1)=f(x﹣1),∴f(x+2)=f(x)即f(x)是周期为2的周期函数∵当x∈(0,1)时,>0,且函数在(0,1)上单调递增,y=f(x)是奇函数,∴当x∈(﹣1,0)时,f(x)<0,且函数在(﹣1,0)上单调递增根据函数的周期性可知y=f(x)在(1,2)内是单调增函数,且f(x)<0故选A【题目点拨】本题主要考查了函数的周期性和函数的单调性,同时考查了分析问题,解决问题的能力,属于基础题8、D【解题分析】根据分段函数解析式代入计算可得;【题目详解】解:因为,,所以,所以故选:D9、C【解题分析】利用终边相同的角的定义,即可得出结论【题目详解】若终边相同,则两角差,A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.,故D选项错误.故选:C.【题目点拨】本题考查终边相同的角的概念,属于基础题.10、B【解题分析】利用基本不等式逐项分析即得.【题目详解】对于A,当时,,故A错误;对于B,因为,所以,当且仅当,即时取等号,故B正确;对于C,因为,所以,当且仅当,即,等号不能成立,故C错误;对于D,当时,,故D错误.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】由,可得函数是以为一个周期的周期函数,再根据函数的周期性和奇偶性将所求转化为已知区间即可得解.【题目详解】解:因为,所以函数是以为一个周期的周期函数,所以,又因为函数是定义在上的奇函数,所以,所以.故答案为:.12、【解题分析】根据函数解析式画出函数图象,则函数的零点个数,转化为函数与有三个交点,结合函数图象判断即可;【题目详解】解:因为,函数图象如下所示:依题意函数恰有三个不同的零点,即函数与有三个交点,结合函数图象可得,即;故答案为:13、③【解题分析】对于①,若,,则与可能异面、平行,故①错误;对于②,若,,则与可能平行、相交,故②错误;对于③,若,,则根据线面垂直的性质,可知,故③正确;对于④,根据面面平行的判定定理可知,还需添加相交,故④错误,故答案为③.【方法点晴】本题主要考查线面平行的判定与性质、面面平行的性质及线面垂直的性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.14、【解题分析】结合正弦函数图象可知时,结合的范围可得到结果.【题目详解】本题正确结果:【题目点拨】本题考查根据三角函数值的范围求解角所处的范围,关键是能够熟练应用正弦函数图象得到对应的自变量的取值集合.15、【解题分析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.16、##【解题分析】不妨设三边的大小关系为:,利用函数的单调性,得出,,的大小关系,作为三角形三边则有任意两边之和大于第三边,再利用基本不等式求出边的范围得出的最大值即可.【题目详解】在上严格增,所以,不妨设,因为对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,所以,因为,所以,因为对任意都成立,所以,所以,所以,所以,所以m的最大值为故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据已知条件求得,再用整体法求函数单调增区间即可;(2)根据(1)中所求函数单调性,结合函数的值域,即可求得参数的值.【小问1详解】因为函数最小正周期为,故可得,解得,则,令,解得.故的单调增区间是:.【小问2详解】因为,由(1)可知,在单调递增,在单调递减,又,,,故方程在上有且只有一个解,只需.故实数的取值范围为.18、(1)8(2)(3)【解题分析】(1)根据圆中切线长的性质得到;(2)设,经过A,P,M三点的圆N以MP为直径,圆N的方程为化简求值即可;(3)(Ⅲ)求出点M到直线AB的距离,利用勾股定理,即可求线段AB长度的最小值.解析:(1)由题意知,圆M的半径r=4,圆心M(0,6),设PA是圆的一条切线,(2)设,经过A,P,M三点的圆N以MP为直径,圆心,半径为得圆N的方程为即,有由,解得或圆过定点(3)圆N的方程,即①圆即②②-①得:圆M与圆N相交弦AB所在直线方程为:圆心M(0,6)到直线AB的距离弦长当时,线段AB长度有最小值.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;圆的问题经常应用的性质有垂径定理的应用,切线长定理的应用.19、(1);(2).【解题分析】(1)根据任意角三角函数的定义即可求解tanθ;(2)分式分子分母同时除以cos2θ化弦为切即可.【小问1详解】∵角的终边经过点,由三角函数的定义知,;【小问2详解】∵,∴.20、(1),;(2)【解题分析】(1)首先根据题意得到,,从而得到,(2)根据题意,当时,小球第一次到达最高点,从而得到,再根据周期为,即可得到.【题目详解】(1)因为小球振动过程中最高点与最低点的距离为,所以因为在一次振动中,小球从最高点运动至最低点所用时间为,所以周期为2,即,所以所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论