2024届广东省深圳市龙文一对一数学高一上期末达标检测模拟试题含解析_第1页
2024届广东省深圳市龙文一对一数学高一上期末达标检测模拟试题含解析_第2页
2024届广东省深圳市龙文一对一数学高一上期末达标检测模拟试题含解析_第3页
2024届广东省深圳市龙文一对一数学高一上期末达标检测模拟试题含解析_第4页
2024届广东省深圳市龙文一对一数学高一上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省深圳市龙文一对一数学高一上期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则a,b,c的大小关系为()A.a<b<c B.c<a<bC.a<c<b D.c<b<a2.下列函数是偶函数的是A. B.C. D.3.已知三条直线,,的斜率分别为,,,倾斜角分别为.若,则下列关系不可能成立的是()A. B.C. D.4.直线的倾斜角为A.30° B.60°C.120° D.150°5.设则的最大值是()A.3 B.C. D.6.函数的零点所在的区间是A.(0,1) B.(1,2)C.(2,3) D.(3,4)7.下列函数既是奇函数,又是在区间上是增函数是A. B.C. D.8.已知集合,则函数的最小值为()A.4 B.2C.-2 D.-49.设四边形ABCD为平行四边形,,.若点M,N满足,则()A.20 B.15C.9 D.610.已知,是第三象限角,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算:________.12.函数的定义域为______13.已知幂函数的图象过点,则_____________14.不等式x2-5x+6≤0的解集为______.15.已知函数则的值等于____________.16.已知函数,若存在,使得,则的取值范围为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数部分图象如下图所示:(1)求函数的解析式;(2)求函数的最小正周期与单调递减区间;(3)求函数在上的值域18.已知函数f(x)=2cos.(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值及取得最大值时自变量x的取值集合;(3)求函数f(x)的单调增区间19.已知函数(1)若,求a的值;(2)判断函数的奇偶性,并证明你的结论;(3)若对于恒成立,求实数m的范围20.用水清洗一堆蔬菜上的农药,设用个单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为,且已知用个单位量的水清洗一次,可洗掉本次清洗前残留农药量的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上(1)根据题意,直接写出函数应该满足的条件和具有的性质;(2)设,现用()个单位量的水可以清洗一次,也可以把水平均分成份后清洗两次,问用哪种方案清洗后蔬菜上残留的农药量比较少,说明理由;(3)若满足题意,直接写出一组参数的值21.△ABC的两顶点A(3,7),B(,5),若AC的中点在轴上,BC的中点在轴上(1)求点C的坐标;(2)求AC边上中线BD的长及直线BD的斜率

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】结合指数函数、幂函数的单调性确定正确选项.【题目详解】在上递增,在上递增..故选:B2、C【解题分析】函数的定义域为所以函数为奇函数;函数是非奇非偶函数;函数的图象关于y轴对称,所以该函数是偶函数;函数的对称轴方程为x=−1,抛物线不关于y轴对称,所以该函数不是偶函数.故选C.3、D【解题分析】根据直线的斜率与倾斜角的关系即可求解.【题目详解】解:由题意,根据直线的斜率与倾斜角的关系有:当或时,或,故选项B可能成立;当时,,故选项A可能成立;当时,,故选项C可能成立;所以选项D不可能成立.故选:D.4、A【解题分析】直线的斜率为,所以倾斜角为30°.故选A.5、D【解题分析】利用基本不等式求解.【题目详解】因为所以,当且仅当,即时,等号成立,故选:D6、B【解题分析】因为函数为上的增函数,故利用零点存在定理可判断零点所在的区间.【题目详解】因为为上的增函数,为上的增函数,故为上的增函数.又,,由零点存在定理可知在存在零点,故选B.【题目点拨】函数的零点问题有两种类型,(1)计算函数的零点,比如二次函数的零点等,有时我们可以根据解析式猜出函数的零点,再结合单调性得到函数的零点,比如;(2)估算函数的零点,如等,我们无法计算此类函数的零点,只能借助零点存在定理和函数的单调性估计零点所在的范围.7、A【解题分析】对于,函数,定义域是,有,且在区间是增函数,故正确;对于,函数的定义域是,是非奇非偶函数,故错误;对于,函数的定义域是,有,在区间不是增函数,故错误;对于,函数的定义域是,有,是偶函数不是奇函数,故错误故选A8、D【解题分析】因为集合,所以,设,则,所以,且对称轴为,所以最小值为,故选D9、C【解题分析】根据图形得出,,,结合向量的数量积求解即可.【题目详解】因为四边形ABCD为平行四边形,点M、N满足,根据图形可得:,,,,,,,,故选C.本题考查了平面向量的运算,数量积的运用,考查了数形结合的思想,关键是向量的分解,表示.考点:向量运算.10、A【解题分析】利用同角三角函数的平方关系求出的值,然后利用两角差的余弦公式求出的值.【题目详解】为第三象限角,所以,,因此,.故选:A.【题目点拨】本题考查利用两角差的余弦公式求值,在利用同角三角函数基本关系求值时,要结合角的取值范围确定所求三角函数值的符号,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由,利用正弦的和角公式求解即可【题目详解】原式,故答案为:【题目点拨】本题考查正弦的和角公式的应用,考查三角函数的化简问题12、【解题分析】由对数的真数大于零、二次根式的被开方数非负,分式的分母不为零,列不等式组可求得答案【题目详解】由题意得,解得,所以函数的定义域为,故答案为:13、##【解题分析】设出幂函数解析式,代入已知点坐标求解【题目详解】设,由已知得,所以,故答案为:14、【解题分析】根据二次函数的特点即可求解.【题目详解】由x2-5x+6≤0,可以看作抛物线,抛物线开口向上,与x轴的交点为,∴,即原不等式的解集为.15、18【解题分析】根据分段函数定义计算【题目详解】故答案为:1816、【解题分析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【题目详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【题目点拨】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);;(3).【解题分析】(1)根据给定函数图象依次求出,再代入作答.(2)由(1)的结论结合正弦函数的性质求解作答.(3)在的条件下,求出(1)中函数的相位范围,再利用正弦函数的性质计算作答.【小问1详解】观察图象得:,令函数周期为,则,,由得:,而,于是得,所以函数的解析式是:.【小问2详解】由(1)知,函数的最小正周期,由解得:,所以函数的最小正周期是,单调递减区间是.【小问3详解】由(1)知,当时,,则当,即时,当,即时,,所以函数在上的值域是.【题目点拨】思路点睛:涉及求正(余)型函数在指定区间上的值域、最值问题,根据给定的自变量取值区间求出相位的范围,再利用正(余)函数性质求解即得.18、(1)(2)当时,取得最大值为.(3)【解题分析】(1)根据三角函数最小正周期公式求得正确答案.(2)根据三角函数最大值的求法求得正确答案.(3)利用整体代入法求得的单调递增区间.【小问1详解】的最小正周期为.【小问2详解】当时,取得最大值为.【小问3详解】由,解得,所以的单调递增区间为.19、(1)(2)奇函数,证明见解析(3)【解题分析】(1)代入,得到,利用对数的运算即可求解;(2)先判断奇偶性,然后分析定义域并计算的数量关系,由此完成证明;(3)将已知转化为,求出在的最小值,即可得解.【小问1详解】,,即,解得,所以a的值为【小问2详解】为奇函数,证明如下:由,解得:或,所以定义域为关于原点对称,又,所以为奇函数;【小问3详解】因为,又外部函数为增函数,内部函数在上为增函数,由复合函数的单调性知函数在上为增函数,所以,又对于恒成立,所以,所以,所以实数的范围是20、(1)答案见解析(2)答案不唯一,具体见解析(3)的值依次为(答案不唯一)【解题分析】(1)根据题意直接写出定义域,值域,,单调性;(2)分别计算2种方案完成后蔬菜农药残留,做差后分类讨论比较大小即可得出答案;(3)根据(1)中函数的性质,直接写出一组即可.【小问1详解】满足的条件和性质如下:;定义域为;;;在区间上单调递减【小问2详解】设清洗前残留的农药量为,若清洗一次,设清洗后蔬菜上残留的农药量为,则,则若把水平均分成份后清洗两次,设第一次清洗后蔬菜上残留的农药量为,则设第二次清洗后蔬菜上残留的农药量为,,比较与的大小:①当,即时,,即,由不等式的性质可得,所以把水平均分成份后清洗两次蔬菜上残留的农药量比较少;②当,即时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论