版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰兴市三中2024届高一数学第一学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设且,若对恒成立,则a的取值范围是()A. B.C. D.2.已知集合,且,则的值可能为()A. B.C.0 D.13.对,不等式恒成立,则a的取值范围是()A. B.C.或 D.或4.已知,若方程有四个不同的实数根,,,,则的取值范围是()A.(3,4) B.(2,4)C.[0,4) D.[3,4)5.若函数y=f(x)图象上存在不同的两点A,B关于y轴对称,则称点对[A,B]是函数y=f(x)的一对“黄金点对”(注:点对[A,B]与[B,A]可看作同一对“黄金点对”).已知函数f(x)=,则此函数的“黄金点对“有()A.0对 B.1对C.2对 D.3对6.若a=20.5,b=logπ3,c=log20.3,则()A. B.C. D.7.直线的倾斜角为A. B.C. D.8.若函数,在区间上单调递增,在区间上单调递减,则()A.1 B.C.2 D.39.零点所在的区间是()A. B.C. D.10.已知函数,则在下列区间中必有零点的是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)二、填空题:本大题共6小题,每小题5分,共30分。11.若幂函数在区间上是减函数,则整数________12.定义在上的函数满足则________.13.的边的长分别为,且,,,则__________.14.若函数在区间内有最值,则的取值范围为_______15.已知函数,则函数的零点个数为__________16.设函数,且;(1)若,求的最小值;(2)若在上能成立,求实数的取值范围三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求下列函数的解析式(1)已知是一次函数,且满足,求;(2)若函数,求18.已知函数的部分图象如下图所示(1)求函数的解析式;(2)讨论函数在上的单调性19.已知函数图象的一个最高点和最低点的坐标分别为和(1)求的解析式;(2)若存在,满足,求m的取值范围20.设全集,集合,(1)当时,求;(2)若,求实数的取值范围21.已知集合,(1),求实数的取值范围;(2)设,,若是的必要不充分条件,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】分,,作与的图象分析可得.【题目详解】当时,由函数与的图象可知不满足题意;当时,函数单调递减,由图知,要使对恒成立,只需满足,得.故选:C注意事项:
用黑色墨水的钢笔或签字笔将答案写在答题卡上.
本卷共9题,共60分.2、C【解题分析】化简集合得范围,结合判断四个选项即可【题目详解】集合,四个选项中,只有,故选:C【题目点拨】本题考查元素与集合的关系,属于基础题3、A【解题分析】对讨论,结合二次函数的图象与性质,解不等式即可得到的取值范围.【题目详解】不等式对一切恒成立,当,即时,恒成立,满足题意;当时,要使不等式恒成立,需,即有,解得.综上可得,的取值范围为.故选:A.4、D【解题分析】利用数形结合可得,结合条件可得,,,且,再利用二次函数的性质即得.【题目详解】由方程有四个不同的实数根,得函数的图象与直线有四个不同的交点,分别作出函数的图象与直线由函数的图象可知,当两图象有四个不同的交点时,设与交点的横坐标为,,设,则,,由得,所以,即设与的交点的横坐标为,,设,则,,且,所以,则故选:D.5、D【解题分析】根据“黄金点对“,只需要先求出当x<0时函数f(x)关于y轴对称的函数的解析式,再作出函数的图象,利用两个图象交点个数进行求解即可【题目详解】由题意知函数f(x)=2x,x<0关于y轴对称的函数为,x>0,作出函数f(x)和,x>0的图象,由图象知当x>0时,f(x)和y=()x,x>0的图象有3个交点所以函数f(x)的““黄金点对“有3对故选D【题目点拨】本题主要考查分段函数的应用,结合“黄金点对“的定义,求出当x<0时函数f(x)关于y轴对称的函数的解析式,作出函数的图象,利用数形结合是解决本题的关键6、D【解题分析】利用对数函数与指数函数的单调性即可得出【题目详解】∵a=20.5>1,1>b=logπ3>0,c=log20.3<0,∴a>b>c.故选D【题目点拨】本题考查了对数函数与指数函数的单调性,属于基础题7、B【解题分析】设直线x﹣y+3=0的倾斜角为θ由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°故选B8、B【解题分析】根据以及周期性求得.【题目详解】依题意函数,在区间上单调递增,在区间上单调递减,则,即,解得.故选:B9、C【解题分析】利用零点存在定理依次判断各个选项即可.【题目详解】由题意知:在上连续且单调递增;对于A,,,内不存在零点,A错误;对于B,,,内不存在零点,B错误;对于C,,,则,内存在零点,C正确;对于D,,,内不存在零点,D错误.故选:C.10、B【解题分析】根据存在零点定理,看所给区间的端点值是否异号,,,,所以,那么函数的零点必在区间考点:函数的零点二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】由题意可得,求出的取值范围,从而可出整数的值【题目详解】因为幂函数在区间上是减函数,所以,解得,因为,所以,故答案为:212、【解题分析】表示周期为3的函数,故,故可以得出结果【题目详解】解:表示周期为3的函数,【题目点拨】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题13、【解题分析】由正弦定理、余弦定理得答案:14、【解题分析】当函数取得最值时有,由此求得的值,根据列不等式组,解不等式组求得的取值范围(含有),对赋值求得的具体范围.【题目详解】由于函数取最值时,,,即,又因为在区间内有最值.所以时,有解,所以,即,由得,当时,,当时,又,,所以的范围为.【题目点拨】本小题主要考查三角函数最值的求法,考查不等式的解法,考查赋值法,属于中档题.15、3【解题分析】由,得,作出y=f(x),的图象,由图象可知共有3个交点,故函数的零点个数为3故答案为:316、(1)3(2)或【解题分析】(1)由可得,再利用基本不等式中乘“1”法的应用计算可得;(2)将已知转化为不等式有解,再对参数分类讨论,分别计算可得.【小问1详解】函数,由,可得,所以,当时等号成立,又,,,解得时等号成立,所以的最小值是3.【小问2详解】由题知,在上能成立,即能成立,即不等式有解①当时,不等式的解集为,满足题意;②当时,二次函数开口向下,必存在解,满足题意;③当时,需,解得或综上,实数的取值范围是或三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2),【解题分析】(1)利用待定系数法求解;(2)利用换元法求解.【题目详解】(1)因为是一次函数,设,则,所以,则,解得,所以;(2)由函数,令,则,所以,所以.18、(1)(2)在,上单调递减,在,和,上单调递增【解题分析】(1)由图知,,最小正周期,由,求得的值,再将点,代入函数的解析式中,求出的值,即可;(2)由,,知,,再结合正弦函数的单调性,即可得解【小问1详解】解:由图知,,最小正周期,因为,所以,将点,代入函数的解析式中,得,所以,,即,,因为,所以,故函数的解析式为;【小问2详解】解:因为,,所以,,令,则,,因为函数在,上单调递减,在,和,上单调递增,令,得,令,得,令,得,所以在,上单调递减,在,和,上单调递增19、(1),(2)【解题分析】(1)根据题意得到,所以,再代入数据计算得到,,得到答案.(2)因为,所以得到,得到计算得到答案.【题目详解】(1)由题意得,则.又,则,因,所以.,,因为的图象经过点,所以,所以,,因为,所以故(2)因为,所以从而,,因为,所以要使得存在满足,则,解得.故m的取值范围为【题目点拨】本题考查了三角函数的解析式,存在问题,计算函数的值域是解题的关键.20、(1)或;(2)【解题分析】(1)由得到,然后利用集合的补集和交集运算求解.(2)化简集合,根据,分和两种情况求解.【题目详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幕墙工程售后服务承诺书(35篇)
- 《榜样的力量》观后感(5篇)
- DB12-T 1072-2021 呼吸道传染病集中隔离医学观察点消毒技术指南
- 茶文化与茶艺鉴赏 教案 项目四 知茶性-茶叶基础知识
- 2024年碳金融项目资金申请报告代可行性研究报告
- 华中科技大学建规学院设计素描教案
- 供应链运营 教案项目一 供应链及供应链管理
- 新建民用装配式建筑防护设计与施工技术规范征求意见稿
- 中小学生防火安全主题班会教案
- 上海市县(2024年-2025年小学五年级语文)统编版竞赛题(下学期)试卷及答案
- 音乐与健康智慧树知到期末考试答案2024年
- 低压断路器课件
- 小学生书法展览活动方案
- 24春国家开放大学《金融基础》形考任务题库参考答案
- 乡镇平安建设培训课件
- 外国新闻传播史 课件 第十八章 埃及的新闻传播事业
- 广东省珠海市2024年春季高考模拟考试数学试卷含答案
- 四川航空介绍
- 从销售到营销的转变与发展
- 机关食堂食品安全
- 车间监控方案
评论
0/150
提交评论