版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省教考联盟2024届数学高一上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设向量,,,则A. B.C. D.2.若则函数的图象必不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限3.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过20的素数中,随机选取2个不同的数,其和等于20的概率是()【注:如果一个大于1的整数除了1和自身外无其它正因数,则称这个整数为素数.】A. B.C. D.4.命题“对任意x∈R,都有x2≥1”的否定是()A.对任意x∈R,都有x2<1 B.不存在x∈R,使得x2<1C.存在x∈R,使得x2≥1 D.存在x∈R,使得x2<15.已知函数,对于任意,且,均存在唯一实数,使得,且,若关于的方程有4个不相等的实数根,则的取值范围是A. B.C. D.6.设集合,则()A. B.C.{2} D.{-2,2}7.下列四组函数中,表示相同函数的一组是()A.,B.,C.,D.,8.已知集合0,,1,,则A. B.1,C.0,1, D.9.已知x,y是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知函数,,则的值域为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在区间上单调递减,在上单调递增,则实数的取值范围是_________12.已知,,则的最大值为______;若,,且,则______.13.已知,且,则的最小值为____________.14.已知函数,则满足的实数的取值范围是__15.边长为2的菱形中,,将沿折起,使得平面平面,则二面角的余弦值为__________16.函数的定义域是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某渔业公司年初用98万元购进一艘渔船,用于捕捞.已知该船使用中所需的各种费用e(单位:万元)与使用时间n(,单位:年)之间的函数关系式为,该船每年捕捞的总收入为50万元(1)该渔船捕捞几年开始盈利(即总收入减去成本及所有使用费用为正值)?(2)若当年平均盈利额达到最大值时,渔船以30万元卖出,则该船为渔业公司带来的收益是多少万元?18.如图,欲在山林一侧建矩形苗圃,苗圃左侧为林地,三面通道各宽,苗圃与通道之间由栅栏隔开(1)若苗圃面积,求栅栏总长的最小值;(2)若苗圃带通道占地总面积为,求苗圃面积的最大值19.已知全集,集合(1)若,求(2).若p是q的充分不必要条件,求a的取值范围20.已知定义域为的奇函数.(1)求的值;(2)用函数单调性的定义证明函数在上是增函数.21.已知.(1)化简;(2)若是第三象限角,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】,由此可推出【题目详解】解:∵,,,∴,,,,故选:A【题目点拨】本题主要考查平面向量垂直的坐标表示,考查平面向量的模,属于基础题2、B【解题分析】令,则的图像如图所示,不经过第二象限,故选B.考点:1、指数函数图像;2、特例法解题.3、A【解题分析】随机选取两个不同的数共有种,而其和等于20有2种,由此能求出随机选取两个不同的数,其和等于20的概率【题目详解】在不超过20的素数中有2,3,5,7,11,13,17,19共8个,随机选取两个不同的数共有种,随机选取两个不同的数,其和等于20有2种,分别为(3,17)和(7,13),故可得随机选取两个不同的数,其和等于20的概率,故选:4、D【解题分析】根据含有一个量词的否定是改量词、否结论直接得出.【题目详解】因为含有一个量词的否定是改量词、否结论,所以命题“对任意x∈R,都有x2≥1”的否定是“存在x∈R,使得x2<1”.故选:D.【题目点拨】本题考查含有一个量词的否定,属于基础题.5、A【解题分析】解:由题意可知f(x)在[0,+∞)上单调递增,值域为[m,+∞),∵对于任意s∈R,且s≠0,均存在唯一实数t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是减函数,值域为(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m∵|f(x)|=f()有4个不相等的实数根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴则a的取值范围是(﹣4,﹣2),故选A点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.6、C【解题分析】解一元二次不等式,求出集合B,解得集合A,根据集合的交集运算求得答案.【题目详解】由题意解得:,故,或,所以,故选:C7、C【解题分析】根据相同函数的判断原则进行定义域的判断即可选出答案.【题目详解】解:由题意得:对于选项A:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故A错误;对于选项B:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故B错误;对于选项C:的定义域为,的定义域为,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C正确;对于选项D:的定义域为,的定义域为或,所以这两个函数的定义域不同,不表示相同的函数,故D错误.故选:C8、A【解题分析】直接利用交集的运算法则化简求解即可【题目详解】集合,,则,故选A【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.9、C【解题分析】由充要条件的定义求解即可【题目详解】因为,若,则,若,则,即,所以,即“”是“”的充要条件,故选:C.10、A【解题分析】根据两角和的正弦公式、二倍角公式和辅助角公式化简可得,结合和正弦函数的单调性即可求出函数的最大值和最小值.【题目详解】由题意知,,由,得,又函数在上单调递增,在上单调递减,令,所以函数在上单调递增,在上单调递减,有,所以,故的值域为.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】反比例函数在区间上单调递减,要使函数在区间上单调递减,则,还要满足在上单调递增,故求出结果【题目详解】函数根据反比例函数的性质可得:在区间上单调递减要使函数在区间上单调递减,则函数在上单调递增则,解得故实数的取值范围是【题目点拨】本题主要考查了函数单调性的性质,需要注意反比例函数在每个象限内是单调递减的,而在定义域内不是单调递减的12、①.14②.10【解题分析】根据数量积的运算性质,计算的平方即可求出最大值,两边平方,可得,计算的平方即可求解.【题目详解】,当且仅当同向时等号成立,所以,即的最大值为14,由两边平方可得:,所以,所以,即.故答案为:14;10【题目点拨】本题主要考查了数量积的运算性质,数量积的定义,考查了运算能力,属于中档题.13、##2.5【解题分析】将变形为,利用基本不等式求得答案.【题目详解】由题意得:,当且仅当时取得等号,故答案为:14、【解题分析】分别对,分别大于1,等于1,小于1的讨论,即可.【题目详解】对,分别大于1,等于1,小于1讨论,当,解得当,不存在,当时,,解得,故x的范围为【题目点拨】本道题考查了分段函数问题,分类讨论,即可,难度中等15、【解题分析】作,则为中点由题意得面作,连则为二面角的平面角故,,点睛:本题考查了由平面图形经过折叠得到立体图形,并计算二面角的余弦值,本题关键在于先找出二面角的平面角,依据定义先找出平面角,然后根据各长度,计算得结果16、【解题分析】由题意可得,从而可得答案.【题目详解】函数的定义域满足即,所以函数的定义域为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)该渔船捕捞3年开始盈利;(2)万元.【解题分析】(1)由题设可得,解一元二次不等式即可确定第几年开始盈利.(2)由平均盈利额,应用基本不等式求最值注意等号成立条件,进而计算总收益.【小问1详解】由题意,渔船捕捞利润,解得,又,,故,∴该渔船捕捞3年开始盈利.【小问2详解】由题意,平均盈利额,当且仅当时等号成立,∴在第7年平均盈利额达到最大,总收益为万元.18、(1)200米(2)4608平方米【解题分析】(1)设苗圃的两边长分别为a,b,依题意列出已知和所求,由基本不等式直接可得;(2)根据题意列出已知,利用基本不等式将条件化为不等式,然后解不等式可得.【小问1详解】设苗圃的两边长分别为a,b(如图),则,,当且仅当即时取“=”,故栅栏总长的最小值为200米【小问2详解】,而,故,令,则,因式分解为,解得,所以,,当且仅当,即时取“=”,故苗圃面积的最大值为4608平方米19、(1)或;(2)【解题分析】(1)根据集合的补集和并集的定义进行求解即可;(2)由充分不必要条件确定集合之间的关系,根据真子集的性质进行求解即可.【小问1详解】因为,所以,因此或,而,所以或;【小问2详解】因为p是q的充分不必要条件,所以,因此有:,故a的取值范围为.20、(1)2;(2)见解析【解题分析】:(1)利用奇函数定义f(-x)=-f(x)中特殊值求a的值;(2)按按取点,作差,变形,判断的过程来即可试题解析:(1)∵是定义域为的奇函数,∴,即,∴,即解得:.(2)由(1)知,,任取,且,则由,可知:∴,,,∴,即.∴函数在上是增函数.点晴:本题属于对函数单调性应用的考察,若函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数学-山东省淄博市2024-2025学年第一学期高三期末摸底质量检测试题和答案
- 《文学概论》课程期末试题B卷及答案
- 小学一年级20以内数学口算练习题
- 合伙经营协议书(3篇)
- 小学数学六年级上册《分数四则混合运算》教学设计
- 秋季腹泻防治彩
- 《心内科常见疾病》课件
- 企业社会责任与品牌价值计划
- 游戏产业行业设计师培训总结
- 教学策略调整与灵活应对计划
- 中国重症患者肠外营养治疗临床实践专家共识(2024)解读
- 学校品牌定义及内涵
- 古诗词1000首
- 2018级成考专升本汉语言文学专业12月份考试资料文献学复习资料
- 最新中考英语单词表2200个
- 我的专业成长故事
- 公司管理制度-公司管理制度
- 井用潜水泵的安装
- 花纹钢板理论重量表(精品)
- 疫情索赔公式及相应表格模板Excel
- 夏令营活动日程安排表
评论
0/150
提交评论