2024届吉林省白山一中数学高一上期末达标检测模拟试题含解析_第1页
2024届吉林省白山一中数学高一上期末达标检测模拟试题含解析_第2页
2024届吉林省白山一中数学高一上期末达标检测模拟试题含解析_第3页
2024届吉林省白山一中数学高一上期末达标检测模拟试题含解析_第4页
2024届吉林省白山一中数学高一上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省白山一中数学高一上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则a,b,c的大小关系是()A. B.C. D.2.下列函数值为的是()A.sin390° B.cos750°C.tan30° D.cos30°3.已知函数对任意实数都满足,若,则A.-1 B.0C.1 D.24.已知奇函数fx在R上是增函数,若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b5.设,,,则的大小关系是()A B.C. D.6.设,则a,b,c的大小关系是()A. B.C. D.7.已知幂函数在上单调递减,则m的值为()A.0 B.1C.0或1 D.8.将函数图象上的点向右平移个单位长度后得到点,若点仍在函数的图象上,则的最小值为()A. B.C. D.9.函数的部分图像为()A. B.C. D.10.若集合,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若关于的方程的一个根在区间上,另一个根在区间上,则实数的取值范围是__________12.给出下列四个结论函数的最大值为;已知函数且在上是减函数,则a的取值范围是;在同一坐标系中,函数与的图象关于y轴对称;在同一坐标系中,函数与的图象关于直线对称其中正确结论序号是______13.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.14.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.15.设偶函数的定义域为,函数在上为单调函数,则满足的所有的取值集合为______16.已知,则的最大值为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有一种新型的洗衣液,去污速度特别快,已知每投放个(,且)单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用.(1)若只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,求的值;(2)若只投放一次个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放个单位的洗衣液,分钟后再投放个单位的洗衣液,则在第分钟时洗衣液是否还能起到有效去污的作用?请说明理由.18.已知函数(1)求的最大值,并写出取得最大值时自变量的集合;(2)把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,求在上的单调递增区间.19.已知函数的定义域是

A

,不等式的解集是集合

B

,求集合

A

.20.已知函数(1)求的最小正周期、最大值、最小值;(2)求函数的单调区间;21.已知函数(1)判断并证明函数的奇偶性;(2)判断函数在区间上的单调性(不必写出过程),并解不等式

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据指数函数的单调性分析出的范围,根据对数函数的单调性分析出的范围,结合中间值,即可判断出的大小关系.【题目详解】因为在上单调递减,所以,所以,又因为且在上单调递增,所以,所以,又因为在上单调递减,所以,所以,综上可知:,故选:B.【题目点拨】方法点睛:常见的比较大小的方法:(1)作差法:作差与作比较;(2)作商法:作商与作比较(注意正负);(3)函数单调性法:根据函数单调性比较大小;(4)中间值法:取中间值进行大小比较.2、A【解题分析】由诱导公式计算出函数值后判断详解】,,,故选:A3、A【解题分析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【题目详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【题目点拨】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.4、C【解题分析】由题意:a=f-且:log2据此:log2结合函数的单调性有:flog即a>b>c,c<b<a.本题选择C选项.【考点】指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.5、C【解题分析】详解】,即,选.6、C【解题分析】比较a、b、c与0和1的大小即可判断它们之间的大小.【题目详解】,,,故故选:C.7、A【解题分析】根据幂函数得的定义,求得或,结合幂函数的性质,即可求解.【题目详解】由题意,幂函数,可得,解得或,当时,可得,可得在上单调递减,符合题意;当时,可得,可得在上无单调性,不符合题意,综上可得,实数的值为.故选:A.8、B【解题分析】作出函数和直线图象,根据图象,利用数形结合方法可以得到的最小值.【题目详解】画出函数和直线的图象如图所示,是它们的三个相邻的交点.由图可知,当在点,在点时,的值最小,易知的横坐标分别为,所以的最小值为,故选:B.9、D【解题分析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【题目详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D10、D【解题分析】详解】集合,所以.故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】设,时,方程只有一个根,不合题意,时,方程的根,就是函数的零点,方程的一个根在区间上,另一个根在区间上,且只需,即,解得,故答案为.12、【解题分析】根据指数函数单调性可得二次函数的最值,求得的最小值为;根据对数函数的图象与性质,求得a的取值范围是;同一坐标系中,函数与的图象关于x轴对称;同一坐标系中,函数与的图象关于直线对称【题目详解】对于,函数的最大值为1,的最小值为,错误;对于,函数且在上是减函数,,解得a的取值范围是,错误;对于,在同一坐标系中,函数与的图象关于x轴对称,错误;对于,在同一坐标系中,函数与的图象关于直线对称,正确综上,正确结论的序号是故答案为【题目点拨】本题考查了指数函数与对数函数的性质与应用问题,是基础题13、【解题分析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【题目详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.14、①.6②.10240【解题分析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【题目详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【题目点拨】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.15、【解题分析】∵,又函数在上为单调函数∴=∴,或∴∴满足的所有的取值集合为故答案为16、【解题分析】消元,转化为求二次函数在闭区间上的最值【题目详解】,,时,取到最大值,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)分钟;(3)见详解.【解题分析】(1)由只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,根据已知可得,,代入可求出的值;(2)由只投放一次个单位的洗衣液,可得,分、两种情况解不等式即可求解;(3)令,由题意求出此时的值并与比较大小即可.【题目详解】(1)因为,当两分钟时水中洗衣液的浓度为克/升时,可得,即,解得;(2)因为,所以,当时,,将两式联立解之得;当时,,将两式联立解之得,综上可得,所以若只投放一次个单位的洗衣液,则有效去污时间可达分钟;(3)当时,由题意,因为,所以在第分钟时洗衣液能起到有效去污的作用.【题目点拨】本题主要考查分段函数模型的选择和应用,其中解答本题的关键是正确理解水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用,属中等难度题.18、(1)的最大值,(2)【解题分析】(1)根据的范围可得的范围,可得的最大值及取得最大值时自变量的集合;(2)由图象平移规律可得,结合的范围和正弦曲线的单调性可得答案.【小问1详解】因为,所以,所以,当即时的最大值,所以取得最大值时自变量的集合是.【小问2详解】因为把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,所以.因为,所以.因为正弦曲线在上的单调递增区间是,所以,所以.所以在上的单调递增区间是.19、;.【解题分析】先解出不等式得到集合A,再根据指数函数单调性解出集合B,然后根据补集和交集的定义求得答案.【题目详解】由题意,,则,又,则,,于是.20、(1),最大值1,最小值-1;(2)在上单调递增;上单调递减;【解题分析】(1)利用两角差余弦公式、两角和正弦公式化简函数式,进而求的最小正周期、最大值、最小值;(2)利用的性质求函数的单调区间即可.【题目详解】(1),∴,且最大值、最小值分别为1,-1;(2)由题意,当时,单调递增,∴,,单调递增;当时,单调递减,∴,,单调递减;综上,当,单调递增;,单调递减;【题目点拨】关键点点睛:应用两角和差公式化简三角函数式并求最小正周期、最值;根据性质确定三角函数的单调区间.21、(1)函数是R上的偶函数,证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论