2024届湖北省武汉市部分学校高一数学第一学期期末质量检测模拟试题含解析_第1页
2024届湖北省武汉市部分学校高一数学第一学期期末质量检测模拟试题含解析_第2页
2024届湖北省武汉市部分学校高一数学第一学期期末质量检测模拟试题含解析_第3页
2024届湖北省武汉市部分学校高一数学第一学期期末质量检测模拟试题含解析_第4页
2024届湖北省武汉市部分学校高一数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉市部分学校高一数学第一学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,,则A. B.C. D.2.已知,则的大小关系是()A. B.C. D.3.已知,,,,则,,的大小关系是()A. B.C. D.4.下列图象是函数图象的是A. B.C. D.5.某几何体的三视图如图所示,则该几何体的表面积是A. B.C. D.6.如图,在正四棱柱中,,点为棱的中点,过,,三点的平面截正四棱柱所得的截面面积为()A.2 B.C. D.7.已知命题,,则p的否定是()A., B.,C., D.,8.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.9.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.函数的图象大致是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在上奇函数,且函数为偶函数,当时,,则______12.已知函数是奇函数,当时,,若,则m的值为______.13.函数的零点个数是________.14.如图是函数在一个周期内的图象,则其解析式是________15.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________.16.函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于原点对称,则的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在边长为8的正三角形ABC中,E,F依次是AB,AC的中点,,D,H,G为垂足,若将绕AD旋转,求阴影部分形成的几何体的表面积与体积.18.设两个向量,,满足,.(1)若,求、的夹角;(2)若、夹角为,向量与夹角为钝角,求实数的取值范围.19.已知函数,(1)求最小正周期;(2)求的单调递增区间;(3)当时,求的最大值和最小值20.解答题(1);(2)lg20+log1002521.已知函数,.(1)若不等式的解集为,求不等式的解集;(2)若函数在区间上有两个不同的零点,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由得,所以;由得,所以.所以.选A2、B【解题分析】利用指数函数和对数函数的性质,三角函数的性质比较大小即可【题目详解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴综上可知故选:B3、B【解题分析】根据题意不妨设,利用对数的运算性质化简x,利用指数函数的单调性求出y的取值范围,利用指数幂的运算求出z,进而得出结果.【题目详解】由,不妨设,则,,,所以,故选:B4、D【解题分析】由题意结合函数的定义确定所给图象是否是函数图象即可.【题目详解】由函数的定义可知,函数的每一个自变量对应唯一的函数值,选项A,B中,当时,一个自变量对应两个函数值,不合题意,选项C中,当时,一个自变量对应两个函数值,不合题意,只有选项D符合题意.本题选择D选项.【题目点拨】本题主要考查函数的定义及其应用,属于基础题.5、A【解题分析】由三视图可知几何体是一个底面为梯形的棱柱,再求几何体的表面积得解.【题目详解】由三视图可知几何体是一个底面为直角梯形的棱柱,梯形的上底为1,下底为2,高为2,棱柱的高为2.由题可计算得梯形的另外一个腰长为.所以该几何体的表面积=.故答案为A【题目点拨】本题主要考查三视图找原图,考查几何体的表面积的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理能力.6、D【解题分析】根据题意画出截面,得到截面为菱形,从而可求出截面的面积.【题目详解】取的中点,的中点,连接,因为该几何体为正四棱柱,∴故四边形为平行四边形,所以,又,∴,同理,且,所以过,,三点平面截正四棱柱所得的截面为菱形,所以该菱形的面积为.故选:D7、D【解题分析】由否定的定义写出即可.【题目详解】p的否定是,.故选:D8、B【解题分析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【题目详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.9、A【解题分析】利用或,结合充分条件与必要条件的定义可得结果.详解】根据题意,由于或,因此可以推出,反之,不成立,因此“”是“”的充分而不必要条件,故选A.【题目点拨】判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.10、A【解题分析】利用函数的奇偶性排除选项B、C项,然后利用特殊值判断,即可得到答案【题目详解】由题意,函数满足,所以函数为偶函数,排除B、C,又因为时,,此时,所以排除D,故选A【题目点拨】本题主要考查了函数的图象的识别问题,其中解答中熟练应用函数的奇偶性进行排除,以及利用特殊值进行合理判断是解答的关键,着重考查了分析问题解决问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】求出函数的周期即可求解.【题目详解】根据题意,为偶函数,即函数图象关于直线对称,则有,又由为奇函数,则,则有,即,即函数是周期为4的周期函数,所以,故答案为:12、【解题分析】由奇函数可得,则可得,解出即可【题目详解】因为是奇函数,,所以,即,解得故答案为:【题目点拨】本题考查利用奇偶性求值,考查已知函数值求参数13、3【解题分析】令f(x)=0求解即可.【题目详解】,方程有三个解,故f(x)有三个零点.故答案为:3.14、【解题分析】由图可得;,则;由五点作图法可得,解得,所以其解析式为考点:1.三角函数的图像;2.五点作图法;15、【解题分析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【题目详解】因为已知是定义在R上的偶函数,所以由,又因为上单调递减,所以有.当时,;当时,.故答案为:【题目点拨】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.16、【解题分析】由题意知,先明确值,该函数平移后为奇函数,根据奇函数性质得图象过原点,由此即可求得值【题目详解】∵函数的最小正周期为,∴,即,将的图象向左平移个单位长度,所得函数为,又所得图象关于原点对称,∴,即,又,∴故答案为:【题目点拨】本题考查函数y=Asin(ωx+φ)的图象变换,考查奇偶函数的性质,要熟练掌握图象变换的方法三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、表面积为:,体积为:【解题分析】由题意知,旋转后几何体是一个圆锥,从上面挖去一个圆柱,所求旋转体的表面积由三部分组成:圆锥的底面、侧面,圆柱的侧面,旋转体的体积为圆锥的体积减去圆柱的体积,结合题中的数据,代入圆柱和圆锥的侧面积公式和底面积公式及体积公式进行求解即可.【题目详解】由题意知,旋转后几何体是一个圆锥,从上面挖去一个圆柱,且圆锥的底面半径为4,高为,圆柱的底面半径为2,高为.所求旋转体的表面积由三部分组成:圆锥的底面、侧面,圆柱的侧面.故所求几何体的表面积为:阴影部分形成的几何体的体积:【题目点拨】本题考查简单组合体的表面积和体积的求解、圆柱和圆锥的体积和表面积公式;考查运算求解能力和空间想象能力;熟练掌握旋转体的形成过程和表面积和体积公式是求解本题的关键;属于中档题.18、(1);(2)且.【解题分析】(1)根据数量积运算以及结果,结合模长,即可求得,再根据数量积求得夹角;(2)根据夹角为钝角则数量积为负数,求得的范围;再排除向量与不为反向向量对应参数的范围,则问题得解.【题目详解】(1)因,所以,即,又,,所以,所以,又,所以向量、的夹角是.(2)因为向量与的夹角为钝角,所以,且向量与不反向共线,即,又、夹角为,所以,所以,解得,又向量与不反向共线,所以,解得,所以的取值范围是且.【题目点拨】本题考查利用数量积求向量夹角,以及由夹角范围求参数范围,属综合基础题.19、(1)(2),(3)最大值为,最小值为【解题分析】(1)由周期公式直接可得;(2)利用正弦函数的单调区间解不等式可得;(3)先根据x的范围求出的范围,然后由正弦函数的性质可得.【小问1详解】的最小正周期【小问2详解】由,,得,.所以函数的单调递增区间为,【小问3详解】∵,∴当,即时,当,即时,.20、(1)1;(2)2.【解题分析】(1)利用对数的运算性质可求得原式=lg10=1;(2)同理可求得原式=2log55=2;【题目详解】(1)(2)lg20+log10025【题目点拨】本题考查对数的运算性质,熟练掌握积、商、幂的对数的运算性质是解决问题的关键,属于中档题21、(1);(2)【解题分析】(1)根据二次函数与对应一元二次不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论