吉林省榆树市2024届高一上数学期末达标检测模拟试题含解析_第1页
吉林省榆树市2024届高一上数学期末达标检测模拟试题含解析_第2页
吉林省榆树市2024届高一上数学期末达标检测模拟试题含解析_第3页
吉林省榆树市2024届高一上数学期末达标检测模拟试题含解析_第4页
吉林省榆树市2024届高一上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省榆树市2024届高一上数学期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“”的否定为A. B.C. D.2.如果直线l,m与平面满足和,那么必有()A.且 B.且C.且 D.且3.四棱柱中,,,则与所成角为A. B.C. D.4.下列函数中,既是偶函数,在上是增函数的是()A. B.C. D.5.函数的定义域为A B.C. D.6.若正实数满足,(为自然对数的底数),则()A. B.C. D.7.已知,则A.-2 B.-1C. D.28.已知在海中一孤岛的周围有两个观察站,且观察站在岛的正北5海里处,观察站在岛的正西方.现在海面上有一船,在点测得其在南偏西60°方向相距4海里处,在点测得其在北偏西30°方向,则两个观察站与的距离为A. B.C. D.9.幂函数的图象过点,则()A. B.C. D.10.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆-嫦娥五号返回:舱之所以能达到如此髙的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示).现将石片扔向水面,假设石片第一次接触水面的速率为100m/s,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的90%,若要使石片的速率低于60m/s,则至少还需要“打水漂”的次数为()(参考数据:取lg2≈0.301,lg3≈0.477)A.4 B.5C.6 D.7二、填空题:本大题共6小题,每小题5分,共30分。11.命题“”的否定是__________12.已知,,则的值为___________.13.设集合,,若,则实数的取值范围是________14.已知是第四象限角且,则______________.15.经过两条直线和的交点,且垂直于直线的直线方程为__________16.已知,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在R上的奇函数,其中为指数函数,且的图象过定点(1)求函数的解析式;(2)若关于x的方程,有解,求实数a的取值范围;(3)若对任意的,不等式恒成立,求实数k的取值范围18.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数.(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以4为上界的有界函数,求实数的取值范围.19.求值:(1);(2)20.已知函数f(x)=2asin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值21.已知函数是定义在上的偶函数,且当时,,函数在轴左侧的图象如图所示(1)求函数的解析式;(2)若关于的方程有个不相等的实数根,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据命题的否定的定义写出结论,注意存在量词与全称量词的互换【题目详解】命题“”的否定为“”故选D【题目点拨】本题考查命题的否定,解题时一定注意存在量词与全称量词的互换2、A【解题分析】根据题设线面关系,结合平面的基本性质判断线线、线面、面面的位置关系.【题目详解】由,则;由,则;由上条件,m与可能平行、相交,与有可能平行、相交.综上,A正确;B,C错误,m与有可能相交;D错误,与有可能相交故选:A3、D【解题分析】四棱柱中,因为,所以,所以是所成角,设,则,+=,所以,所以+=,所以,所以选择D4、C【解题分析】根据函数奇偶性的定义及幂函数、对数函数、指数函数的性质,对各选项逐一分析即可求解.【题目详解】解:对A:,定义域为R,因为,所以函数为偶函数,而根据幂函数的性质有在上单调递增,所以在上单调递减,故选项A错误;对B:,定义域为,因为,所以函数为奇函数,故选项B错误;对C:定义域为,因为,所以函数为偶函数,又时,根据对数函数的性质有在上单调递减,所以在上单调递增,故选项C正确;对D:,定义域为R,因为,所以函数为奇函数,故选项D错误.故选:C.5、C【解题分析】要使得有意义,要满足真数大于0,且分母不能为0,即可求出定义域.【题目详解】要使得有意义,则要满足,解得.答案为C.【题目点拨】常见的定义域求解要满足:(1)分式:分母0;(2)偶次根式:被开方数0;(3)0次幂:底数0;(4)对数式:真数,底数且;(5):;6、C【解题分析】由指数式与对数式互化为相同形式后求解【题目详解】由题意得:,,,①,又,,,和是方程的根,由于方程的根唯一,,由①知,,故选:C7、B【解题分析】,,则,故选B.8、D【解题分析】画出如下示意图由题意可得,,又,所以A,B,C,D四点共圆,且AC为直径、在中,,由余弦定理得,∴∴(其中为圆的半径).选D9、C【解题分析】将点代入中,求解的值可得,再求即可.【题目详解】因为幂函数的图象过点,所以有:,即.所以,故,故选:C.10、C【解题分析】设石片第n次“打水漂”时的速率为vn,再根据题设列不等式求解即可.【题目详解】设石片第n次“打水漂”时的速率为vn,则vn=.由,得,则,所以,故,又,所以至少需要“打水漂”的次数为6.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】特称命题的否定.【题目详解】命题“”的否定是【题目点拨】本题考查特称命题的否定,属于基础题;对于含有量词的命题的否定要注意两点:一是要改换量词,即把全称(特称)量词改为特称(全称)量词,二是注意要把命题进行否定.12、【解题分析】利用和角正弦公式、差角余弦公式及同角商数关系,将目标式化为即可求值.【题目详解】.故答案为:.13、【解题分析】对于方程,由于,解得集合,由,根据区间端点值的关系列式求得的范围【题目详解】解:对于,由于,,,;∴∵,集合,∴解得,,则实数的取值范围是故答案为:14、【解题分析】直接由平方关系求解即可.【题目详解】由是第四象限角,可得.故答案为:.15、【解题分析】联立方程组求得交点的坐标为,根据题意求得所求直线的斜率为,结合点斜式可得所求直线的方程.【题目详解】联立方程组,得交点,因为所求直线垂直于直线,故所求直线的斜率,由点斜式得所求直线方程为,即.故答案为:.16、【解题分析】两边同时取以15为底的对数,然后根据对数性质化简即可.【题目详解】因为所以,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解题分析】(1)设出的解析式,根据点求得的解析式.根据为奇函数,求得解析式.(2)根据的单调性和值域,求得的取值范围.(3)证得的单调性,结合的奇偶性化简不等式,得到对任意的,,利用二次函数的性质求得的取值范围.【题目详解】(1)设(,且),则,所以(舍去)或,所以,又为奇函数,且定义域为R,所以,即,所以,所以(2)由于为上减函数,由于,所以,所以,所以.(3)设,则因为,所以,所以,所以,即,所以函数在R上单调递减要使对任意的,恒成立,即对任意的,恒成立因为为奇函数,所以恒成立又因函数在R上单调递减,所以对任意的,恒成立,即对任意的,恒成立令,,时,成立;时,所以,,,无解综上,【题目点拨】本小题主要考查指数函数解析式的求法,考查分式型函数值域的求法,考查利用函数的奇偶性和单调性解函数不等式,考查二次函数的性质,考查分类讨论的数学思想方法,综合性较强,属于难题.18、(1)值域为,不是有界函数;(2)【解题分析】(1)把代入函数的表达式,得出函数的单调区间,结合有界函数的定义进行判断;(2)由题意知,对恒成立,令,对恒成立,设,,求出单调区间,得到函数的最值,从而求出的值.试题解析:(1)当时,,令,∵,∴,;∵在上单调递增,∴,即在上的值域为,故不存在常数,使成立.∴函数在上不是有界函数(2)由题意知,对恒成立,即:,令,∵,∴.∴对恒成立,∴,设,,由,由于在上递增,在上递减,在上的最大值为,在上的最小值为,∴实数的取值范围为19、(1)(2)【解题分析】(1)利用指数幂计算公式化简求值;(2)利用对数计算公式换件求值.【小问1详解】【小问2详解】.20、a=12-6,b=-23+12,或a=-12+6,b=19-12.【解题分析】∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1.若a>0,则,解得,若a<0,则,解得,综上可知,a=12-6,b=-23+12,或a=-12+6,b=19-12.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论