2024届山东省武城县第二中学高一上数学期末学业质量监测模拟试题含解析_第1页
2024届山东省武城县第二中学高一上数学期末学业质量监测模拟试题含解析_第2页
2024届山东省武城县第二中学高一上数学期末学业质量监测模拟试题含解析_第3页
2024届山东省武城县第二中学高一上数学期末学业质量监测模拟试题含解析_第4页
2024届山东省武城县第二中学高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省武城县第二中学高一上数学期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值是()A.4π B.2πC.π D.2.设函数,则下列说法错误的是()A.当时,的值域为B.的单调递减区间为C.当时,函数有个零点D.当时,关于的方程有个实数解3.函数(且)图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.4.已知,则为()A. B.2C.3 D.或35.已知函数,若(其中.),则的最小值为()A. B.C.2 D.46.若集合,,则()A. B.C. D.7.已知扇形的面积为,扇形圆心角的弧度是,则扇形的周长为()A. B.C. D.8.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种加密密钥密码系统,其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文.现在加密密钥为,如“4”通过加密后得到密文“2”,若接受方接到密文“”,则解密后得到的明文是()A. B.C.2 D.9.已知函数,若,则函数的单调递减区间是A. B.C. D.10.若函数f(x)=sin(2x+φ)为R上的偶函数,则φ的值可以是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知某扇形的半径为,面积为,那么该扇形的弧长为________.12.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________13.cos(-225°)=______14.如图,扇形的面积是,它的周长是,则弦的长为___________.15.已知集合A={x|2x>1},B={x|log2x<0},则∁AB=___16.对,不等式恒成立,则m的取值范围是___________;若在上有解,则m的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在上的最大值与最小值之和为(1)求实数的值;(2)对于任意的,不等式恒成立,求实数的取值范围18.如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求点A到平面PCD的距离.19.已知全集,集合,.(1)当时,求;(2)命题p:,命题q:,若q是p的必要条件,求实数a的取值范围.20.已知平面向量,,,且,.(1)求和:(2)若,,求向量与向量的夹角的大小.21.已知函数的图象在轴右侧的第一个最高点和第一个最低点的坐标分别为和.(1)求函数的解析式;(2)求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】首先得出f(x1)是最小值,f(x2)是最大值,可得|x1﹣x2|的最小值为函数的半个周期,根据周期公式可得答案【题目详解】函数,∵对任意x∈R都有f(x1)≤f(x)≤f(x2),∴f(x1)是最小值,f(x2)是最大值;∴|x1﹣x2|的最小值为函数的半个周期,∵T=2π,∴|x1﹣x2|的最小值为π,故选:C.2、C【解题分析】利用二次函数和指数函数的值域可判断A选项;利用二次函数和指数函数的单调性可判断B选项;利用函数的零点个数求出的取值范围,可判断C选项;解方程可判断D选项.【题目详解】选项A:当时,当时,,当时,,当时,,综上,函数的值域为,故A正确;选项B:当时,的单调递减区间为,当时,函数为单调递增函数,无单调减区间,所以函数的单调递减为,故B正确;选项C:当时,令,解得或(舍去),当时,要使有解,即在上有解,只需求出的值域即可,当时,,且函数在上单调递减,所以此时的范围为,故C错误;选项D:当时,,即,即,解得或,当,时,,则,即,解得,所以当时,关于的方程有个实数解,故D正确.故选:C.3、D【解题分析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误4、C【解题分析】根据分段函数的定义域求解.【题目详解】因为,所以故选:C5、B【解题分析】根据二次函数的性质及对数的运算可得,利用均值不等式求最值即可.详解】,由,,即,,当且仅当,即时等号成立,故选:B6、A【解题分析】解一元二次不等式化简集合B,再利用交集的定义直接计算作答.【题目详解】解不等式,即,解得,则,而,所以.故选:A7、A【解题分析】根据扇形的面积公式和弧长的计算公式,求得弧长和半径,即可求得结果.【题目详解】设扇形的半径为,弧长为.由题意:,解得,所以扇形的周长为,故选:A.【题目点拨】本题考查扇形的弧长和面积公式,属基础题.8、A【解题分析】根据题意中给出的解密密钥为,利用其加密、解密原理,求出的值,解方程即可求解.【题目详解】由题可知加密密钥为,由已知可得,当时,,所以,解得,故,显然令,即,解得,即故选:A.9、D【解题分析】由判断取值范围,再由复合函数单调性的原则求得函数的单调递减区间【题目详解】,所以,则为单调增函数,又因为在上单调递减,在上单调递增,所以的单调减区间为,选择D【题目点拨】复合函数的单调性判断遵循“同增异减”的原则,所以需先判断构成复合函数的两个函数的单调性,再判断原函数的单调性10、C【解题分析】根据三角函数的奇偶性,即可得出φ的值【题目详解】函数f(x)=sin(2x+φ)为R上的偶函数,则φ=+kπ,k∈Z;所以φ的值可以是.故选C.【题目点拨】本题考查了三角函数的图象与性质的应用问题,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据扇形面积公式可求得答案.【题目详解】设该扇形的弧长为,由扇形的面积,可得,解得.故答案.【题目点拨】本题考查了扇形面积公式的应用,考查了学生的计算能力,属于基础题.12、①.0②.【解题分析】利用坐标法可得,结合条件及完全平方数的最值即得.【题目详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.13、【解题分析】直接利用诱导公式求知【题目详解】【题目点拨】本题考查利用诱导公式求知,一般按照以下几个步骤:负化正,大化小,划到锐角为终了同时在转化时需注意“奇变偶不变,符号看象限.”14、【解题分析】由扇形弧长、面积公式列方程可得,再由平面几何的知识即可得解.【题目详解】设扇形的圆心角为,半径为,则由题意,解得,则由垂径定理可得.故答案为:.15、[1,+∞)【解题分析】由指数函数的性质化简集合;由对数函数的性质化简集合,利用补集的定义求解即可.【题目详解】,所以,故答案为.【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且不属于集合的元素的集合.16、①.②.【解题分析】(1)根据一元二次函数的图象,考虑开口方向和判别式,即可得到答案;(2)利用参变分离,将问题转化为不等式在上有解;【题目详解】(1)关于x的不等式函数对于任意实数x恒成立,则,解得m的取值范围是.(2)若在上有解,则在上有解,易知当时,当时,此时记,则,,在上单调递减,故,综上可知,,故m的取值范围是.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据指对数函数的单调性得函数在上是单调函数,进而得,解方程得;(2)根据题意,将问题转化为对于任意的,恒成立,进而求函数的最值即可.【题目详解】解:(1)因为函数在上的单调性相同,所以函数在上是单调函数,所以函数在上的最大值与最小值之和为,所以,解得和(舍)所以实数的值为.(2)由(1)得,因为对于任意的,不等式恒成立,所以对于任意的,恒成立,当时,为单调递增函数,所以,所以,即所以实数的取值范围【题目点拨】本题考查指对数函数的性质,不等式恒成立求参数范围,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将问题转化为任意的,恒成立求解.18、(1)同解析(2)异面直线PB与CD所成的角的余弦值为.(3)点A到平面PCD的距离d=【解题分析】解法一:(Ⅰ)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,所以PO⊥平面ABCD.(Ⅱ)连结BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC.由(Ⅰ)知PO⊥OB,∠PBO为锐角,所以∠PBO是异面直线PB与CD所成的角.因AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=,在Rt△POA中,因为AP=,AO=1,所以OP=1,在Rt△PBO中,PB=,cos∠PBO=,所以异面直线PB与CD所成的角的余弦值为.(Ⅲ)由(Ⅱ)得CD=OB=,在Rt△POC中,PC=,所以PC=CD=DP,S△PCD=·2=.又S△=设点A到平面PCD的距离h,由VP-ACD=VA-PCD,得S△ACD·OP=S△PCD·h,即×1×1=××h,解得h=.解法二:(Ⅰ)同解法一,(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz.则A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1).所以=(-1,1,0),=(t,-1,-1),∞〈、〉=,所以异面直线PB与CD所成的角的余弦值为,(Ⅲ)设平面PCD的法向量为n=(x0,y0,x0),由(Ⅱ)知=(-1,0,1),=(-1,1,0),则n·=0,所以-x0+x0=0,n·=0,-x0+y0=0,即x0=y0=x0,取x0=1,得平面的一个法向量为n=(1,1,1).又=(1,1,0).从而点A到平面PCD的距离d=19、(1)(2)【解题分析】(1)先解分式不等式和二次不等式得集合,再求补集和交集即可;(2)先判断得,再根据必要条件得到集合的包含关系,列不等式求解即可.【小问1详解】∵时,,,全集,∴或.∴【小问2详解】∵命题:,命题:,是必要条件,∴∵,∴,∵,,∴,解得或,故实数的取值范围20、(1),;(2).【解题分析】(1)本题首先可根据、得出,然后通过计算即可得出结果;(2)本题首先可根据题意得出以及,然后求出、以及的值,最后根据向量的数量积公式即可得出结果.【题目详解】(1)因为,,,且,,所以,解得,故,.(2)因为,,所以,因为,,所以,,,,设与的夹角为,则,因为,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论