版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市徐汇区南洋模范中学2024届高一数学第一学期期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图像恒过定点,则的坐标是()A. B.C. D.2.函数的一个零点落在下列哪个区间()A.(0,1) B.(1,2)C.(2,3) D.(3,4)3.在下列命题中,不是公理的是A.平行于同一条直线的两条直线互相平行B.如果一条直线上的两点在一个平面内,那么这条直线在此平面内C.空间中,如果两个角的两边分别对应平行,那么这两角相等或互补D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线4.已知函数f(x)(x∈R)满足f(2-x)=-f(x),若函数y=与f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym)(m∈N*),则x1+x2+x3+…+xm的值为()A.4m B.2mC.m D.05.函数是奇函数,则的值为A.0 B.1C.-1 D.不存在6.如图,在矩形中,是两条对角线的交点,则A. B.C. D.7.工艺扇面是中国书面一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为,外圆半径为,内圆半径为.则制作这样一面扇面需要的布料为().A. B.C. D.8.已知圆:与圆:,则两圆公切线条数为A.1条 B.2条C.3条 D.4条9.已知向量,,若,则()A. B.C.2 D.310.函数的零点所在区间为()A.(0,) B.(,)C.(,1) D.(1,2)二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)=x2,若存在t∈R,对任意x∈[1,m](m>1,m∈N),都有f(x+t)≤2x,则m的最大值为______12.幂函数的图象过点,则___________.13.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.14.函数的定义域为__________.15.若,,且,则的最小值为__________16.已知函数在上单调递增,则实数a的取值范围为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)若,求的值;(2)已知锐角,满足,若,求的值.18.已知函数fx=2sin(1)在用“五点法”作函数fx2x-0ππ3π2πx3π5π9πf0200完成上述表格,并在坐标系中画出函数y=fx在区间0,π(2)求函数fx(3)求函数fx在区间-π19.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;20.现有银川二中高一年级某班甲、乙两名学生自进入高中以来的历次数学成绩(单位:分),具体考试成绩如下:甲:、、、、、、、、、、、、;乙:、、、、、、、、、、、、(1)请你画出两人数学成绩的茎叶图;(2)根据茎叶图,运用统计知识对两人的成绩进行比较.(最少写出两条统计结论)21.设函数(1)若,求的值(2)求函数在R上的最小值;(3)若方程在上有四个不相等的实数根,求a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】利用指数函数的性质即可得出结果.【题目详解】由指数函数恒过定点,所以函数的图像恒过定点.故选:D2、B【解题分析】求出、,由及零点存在定理即可判断.【题目详解】,,,则函数的一个零点落在区间上.故选:B【题目点拨】本题考查零点存在定理,属于基础题.3、C【解题分析】A,B,D分别为公理4,公理1,公理2,C为角平行性质,选C4、C【解题分析】由条件可得,即有关于点对称,又的图象关于点对称,即有,为交点,即有,也为交点,计算即可得到所求和【题目详解】解:函数满足,即为,可得关于点对称,函数的图象关于点对称,即有,为交点,即有,也为交点,,为交点,即有,也为交点,则有.故选.【题目点拨】本题考查抽象函数的求和及对称性的运用,属于中档题.5、C【解题分析】由题意得,函数是奇函数,则,即,解得,故选C.考点:函数的奇偶性的应用.6、B【解题分析】利用向量加减法的三角形法则即可求解.【题目详解】原式=,答案为B.【题目点拨】主要考查向量的加减法运算,属于基础题.7、B【解题分析】由扇形的面积公式,可得制作这样一面扇面需要的布料.【题目详解】解:根据题意,由扇形的面积公式可得:制作这样一面扇面需要的布料为.故选:B.【题目点拨】本题考查扇形的面积公式,考查学生的计算能力,属于基础题.8、D【解题分析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条【题目详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条故选D【题目点拨】本题考查了两圆的一般方程与位置关系应用问题,是基础题9、A【解题分析】先计算的坐标,再利用可得,即可求解.【题目详解】,因为,所以,解得:,故选:A10、B【解题分析】结合函数的单调性以及零点的存在性定理求得正确答案.【题目详解】在上递减,所以,在上递增,所以,是定义在上的减函数,,所以函数的零点在区间.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、5【解题分析】设g(x)=f(x+t)-2x=x2+(2t-2)x+t2≤0.从而得到g(1)≤0且g(m)≤0,求得t的范围,讨论t的最值,代入m的不等式求得m的范围,结合条件可得m的最大值【题目详解】函数f(x)=x2,那么f(x+t)=x2+2tx+t2,对任意实数x∈[l,m],都有f(x+t)≤2x成立,即有x2+(2t-2)x+t2≤0令g(x)=x2+(2t-2)x+t2,从而得到g(1)≤0,且g(m)≤0,由g(1)≤0可得,由g(m)≤0,即m2+(2t-2)m+t2≤0当时,;当时,综上可得,由m为正整数,可得m的最大值为5故答案为5【题目点拨】本题考查不等式恒成立问题解法,注意运用二次函数的性质,考查运算求解能力,是中档题12、【解题分析】将点的坐标代入解析式可解得结果.【题目详解】因为幂函数的图象过点,所以,解得.故答案为:13、9【解题分析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.14、【解题分析】解不等式即可得出函数的定义域.【题目详解】对于函数,有,解得.因此,函数的定义域为.故答案为:.15、##【解题分析】运用均值不等式中“1”的妙用即可求解.【题目详解】解:因为,,且,所以,当且仅当时等号成立,故答案为:.16、【解题分析】由题意,利用复合函数的单调性,对数函数、二次函数的性质,求得的范围【题目详解】解:函数在上单调递增,函数在上单调递增,且,,解得,即,故答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)5;(2).【解题分析】(1)根据给定条件化正余的齐次式为正切,再代入计算作答.(2)根据给定条件利用差角的余弦公式求出,结合角的范围求出即可作答.【题目详解】(1)因,所以.(2)因,是锐角,则,,又,,因此,,,则,显然,于是得:,解得,所以的值为.18、(1)答案见解析(2)单调递增区间:-π8(3)-2,【解题分析】(1)利用给定的角依次求出对应的三角函数值,进而填表,结合“五点法”画出图象即可;(2)根据正弦函数的单调增区间计算即可;(3)根据x的范围求出2x-π4【小问1详解】2x-0ππ3π2πxπ3π5π7π9πf020-20函数图象如图所示,【小问2详解】令-π2+2kπ≤2x-得-π8+kπ≤x≤所以函数fx的单调递增区间:-π8【小问3详解】因为x∈-π4所以sin2x-当2x-π4=-π2当2x-π4=π4所以函数fx在区间-π419、(1)(2)【解题分析】(1)取中点,连结、,则是侧面与底面所成的二面角,由此能求出侧面与底面所成的二面角(2)连结,,则是异面直线与所成角(或所成角的补角),由此能求出异面直线与所成角的正切值【题目详解】解:(1)取中点,连结、,正四棱锥中,为底面正方形的中心,,,是侧面与底面所成的二面角,侧棱与底面所成的角的正切值为,设,得,,,,,侧面与底面所成的二面角为(2)为底面正方形的中心,是中点,连结,,是的中点,,是异面直线与所成角(或所成角的补角),,,,,异面直线与所成角的正切值为20、(1)图见解析(2)答案见解析【解题分析】(1)直接按照茎叶图定义画出即可;(2)通过中位数、平均数、方差依次比较.【小问1详解】甲、乙两人数学成绩的茎叶图如图所示:【小问2详解】①从整体分析:乙同学的得分情况是大致对称的,中位数是;甲同学的得分情况,也大致对称,中位数是;②平均分的角度分析:甲同学的平均分为,乙同学的平均分为,乙同学的平均成绩比甲同学高;③方差(稳定性)的角度:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级下册数学教案-1.3 七巧板-人教新课标
- 中班体育课教案:帮叔叔送地图
- 2024年产品代销合同乙方销售渠道
- 人音版三年级上册摇啊摇教案
- 一年级上册数学教案-20以内的进位加法 解决问题(1)-人教版
- 一年级上册数学教案 第四单元【第一课时】 认识物体(一) 人教新课标
- 一年级下册数学教案-第4单元 数数、数的组成∣人教新课标
- 2024年区域性网络安全防护系统建设合同
- 2024年升级版广告推广服务合同
- 二年级下册数学教案 - 7.1 1000以内数的认识 人教版
- 15MW源网荷储一体化项目可行性研究报告写作模板-备案审批
- 北师大版二年级数学上册第五单元《2~5的乘法口诀》(大单元教学设计)
- 少先队辅导员笔试题库附有答案
- 2024年入团知识考试题库及答案
- 婴儿培养箱校准规范
- 《补贴与反补贴措施协议》对出口信贷的法律规制研究2
- 铁道运输实训总结报告
- 企业信息管理概述课件
- 室外健身器材投标方案(技术方案)
- 足浴店店长聘用合同范本
- MOOC 光纤光学-华中科技大学 中国大学慕课答案
评论
0/150
提交评论