内蒙古包铁第一中学2024届高一上数学期末联考模拟试题含解析_第1页
内蒙古包铁第一中学2024届高一上数学期末联考模拟试题含解析_第2页
内蒙古包铁第一中学2024届高一上数学期末联考模拟试题含解析_第3页
内蒙古包铁第一中学2024届高一上数学期末联考模拟试题含解析_第4页
内蒙古包铁第一中学2024届高一上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古包铁第一中学2024届高一上数学期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则的大小关系为A B.C. D.2.已知的图象在上存在个最高点,则的范围()A. B.C. D.3.已知为偶函数,当时,,当时,,则满足不等式的整数的个数为()A.4 B.6C.8 D.104.已知函数,则A.0 B.1C. D.25.已知偶函数的定义域为,当时,,若,则的解集为()A. B.C. D.6.满足的角的集合为()A. B.C. D.7.甲、乙二人参加某体育项目训练,近期的八次测试得分情况如图,则下列结论正确的是()A.甲得分的极差大于乙得分的极差 B.甲得分的75%分位数大于乙得分的75%分位数C.甲得分的平均数小于乙得分的平均数 D.甲得分的标准差小于乙得分的标准差8.下列函数中,值域是的是A. B.C. D.9.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.10.函数的部分图象如图所示,则A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.在三棱锥中,,,,则三棱锥的外接球的表面积为________.12.筒车亦称为“水转筒车”,一种以流水为动力,取水灌田的工具,筒车发明于隋而盛于唐,距今已有1000多年的历史.如图,假设在水流量稳定的情况下,一个半径为3米的筒车按逆时针方向做每6分钟转一圈的匀速圆周运动,筒车的轴心O距离水面BC的高度为1.5米,设筒车上的某个盛水筒P的切始位置为点D(水面与筒车右侧的交点),从此处开始计时,t分钟时,该盛水筒距水面距离为,则___________13.扇形的半径为2,弧长为2,则该扇形的面积为______14.16/17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即.现在已知,,则__________.15.点关于直线的对称点的坐标为______.16.已知函数,若是上的单调递增函数,则的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校手工爱好者社团出售自制的工艺品,每件的售价在20元到40元之间时,其销售量(件)与售价(元/件)之间满足一次函数关系,部分对应数据如下表所示.(元/件)20212223……3940(件)440420400380……6040(1)求此一次函数的解析式;(2)若每件工艺品的成本是20元,在不考虑其他因素的情况下,每件工艺品的售价是多少时,利润最大?最大利润是多少?18.已知函数(,且).(1)判断函数的奇偶性,并予以证明;(2)求使的x的取值范围.19.已知函数是定义在R上的奇函数(1)用定义法证明为增函数;(2)对任意,都有恒成立,求实数k的取值范围20.已知函数f(x)=2asin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值21.为适应市场需求,某公司决定从甲、乙两种类型工业设备中选择一种进行投资生产,根据公司自身生产经营能力和市场调研,得出生产经营这两种工业设备的有关数据如下表:类别年固定成本每台产品原料费每台产品售价年最多可生产甲设备100万元m万元50万元200台乙设备200万元40万元90万元120台假定生产经营活动满足下列条件:①年固定成本与年生产的设备台数无关;②m为待定常数,其值由生产甲种设备的原料价格决定,且m∈[30,40];③生产甲种设备不需要支付环保、专利等其它费用,而生产x台乙种设备还需支付环保,专利等其它费用0.25x2万元;④生产出来的设备都能在当年全部销售出去(Ⅰ)若该公司选择投资生产甲设备,则至少需要年生产a台设备,才能保证对任意m∈[30,40],公司投资生产都不会赔本,求a的值;(Ⅱ)公司要获得最大年利润,应该从甲、乙两种工业设备中选择哪种设备投资生产?请你为该公司作出投资选择和生产安排

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用对数的性质,比较a,b的大小,将b,c与1进行比较,即可得出答案【题目详解】令,结合对数函数性质,单调递减,,,.【题目点拨】本道题考查了对数、指数比较大小问题,结合相应性质,即可得出答案2、A【解题分析】根据题意列出周期应满足的条件,解得,代入周期计算公式即可解得的范围.【题目详解】由题可知,解得,则,故选:A【题目点拨】本题考查正弦函数图像的性质与周期,属于中档题.3、C【解题分析】由时的解析式,可先求得不等式的解集.再根据偶函数性质,即可求得整个定义域内满足不等式的解集,即可确定整数解的个数.【题目详解】当时,,解得,所以;当时,,解得,所以.因为为偶函数,所以不等式的解集为.故整数的个数为8.故选:C【题目点拨】本题考查了不等式的解法,偶函数性质的应用,属于基础题.4、B【解题分析】,选B.5、D【解题分析】先由条件求出参数,得到在上的单调性,结合和函数为偶函数进行求解即可.【题目详解】因为为偶函数,所以,解得.在上单调递减,且.因为,所以,解得或.故选:D6、D【解题分析】利用正弦函数的图像性质即可求解.【题目详解】.故选:D.7、B【解题分析】根据图表数据特征进行判断即可得解.【题目详解】乙组数据最大值29,最小值5,极差24,甲组最大值小于29,最小值大于5,所以A选项说法错误;甲得分的75%分位数是20,,乙得分的75%分位数17,所以B选项说法正确;甲组具体数据不易看出,不能判断C选项;乙组数据更集中,标准差更小,所以D选项错误故选:B8、D【解题分析】分别求出各函数的值域,即可得到答案.【题目详解】选项中可等于零;选项中显然大于1;选项中,,值域不是;选项中,故.故选D.【题目点拨】本题考查函数的性质以及值域的求法.属基础题.9、B【解题分析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【题目详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.10、A【解题分析】由题图知,,最小正周期,所以,所以.因为图象过点,所以,所以,所以,令,得,所以,故选A.【考点】三角函数的图象与性质【名师点睛】根据图象求解析式问题的一般方法是:先根据函数图象的最高点、最低点确定A,h的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P-ABC外接球的直径,即可求出三棱锥P-ABC外接球的表面积【题目详解】∵三棱锥P−ABC中,PA=BC=4,PB=AC=5,PC=AB=,∴构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P−ABC外接球的直径.设长方体的棱长分别为x,y,z,则,∴三棱锥P−ABC外接球的直径为,∴三棱锥P−ABC外接球的表面积为.故答案为:26π.【题目点拨】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.12、【解题分析】根据图象及所给条件确定振幅、周期、,再根据时求即可得解.【题目详解】由题意知,,,,当时,,,即,,所以,故答案为:13、2【解题分析】根据扇形的面积公式即可求解.【题目详解】解:因为扇形的半径为2,弧长为2,所以该扇形的面积为,故答案为:2.14、2【解题分析】先根据要求将指数式转为对数式,作乘积运算时注意使用换底公式去计算.【题目详解】∵,∴,∴故答案为2【题目点拨】底数不同的两个对数式进行运算时,有时可以利用换底公式:将其转化为同底数的对数式进行运算.15、【解题分析】设点关于直线的对称点为,由垂直的斜率关系,和线段的中点在直线上列出方程组即可求解.【题目详解】设点关于直线的对称点为,由对称性知,直线与线段垂直,所以,所以,又线段的中点在直线上,即,所以,由,所以点关于直线的对称点的坐标为:.故答案为:.16、【解题分析】利用函数的单调性求出a的取值范围,再求出的表达式并其范围作答.【题目详解】因函数是上的单调递增函数,因此有,解得,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)每件工艺品的售价为31元时,利润最大,最大利润为2420元【解题分析】(1)设,任取两级数据代入求得参数值得解析式;(2)由(1)中关系式得出利润与的关系,由二次函数的性质得最大值【小问1详解】设,不妨选择两组数据,代入,可得解得∴一次函数的解析式为【小问2详解】设利润为元,由题意可得,∴当时,,∴每件工艺品的售价为31元时,利润最大,最大利润为2420元18、(1)是奇函数,证明见解析;(2).【解题分析】(1)先根据对数函数的定义得函数的定义域关于原点对称,再根据函数的奇偶性定义判断即可;(2)由已知条件得,再分与两种情况讨论,结合对数函数的单调性列出不等式组,求出x的取值范围即可.【题目详解】(1)函数是奇函数.证明:要使函数的解析式有意义,需的解析式都有意义,即解得,所以函数的定义域是,所以函数的定义域关于原点对称.因为所以函数是奇函数.(2)若,即.当时,有解得;当时,有解得,综上所述,当时,x的取值范围是,当时,x的取值范围是.【题目点拨】该题考查的是有关函数的问题,涉及到的知识点有本题函数的奇偶性的判断与证明、对数函数的单调性、根据单调性解不等式,不用对参数进行讨论,属于中档题目.19、(1)证明见解析(2)【解题分析】(1)根据函数单调性定义及指数函数的单调性与值域即可证明;(2)由已知条件,利用函数的奇偶性和单调性,可得对恒成立,然后分离参数,利用基本不等式求出最值即可得答案.【小问1详解】证明:设,则,由,可得,即,又,,所以,即,则在上为增函数;【小问2详解】解:因为任意,都有恒成立,且函数是定义在R上的奇函数,所以对恒成立,又由(1)知函数在上为增函数,所以对恒成立,由,有,所以对恒成立,设,由递减,可得,所以,当且仅当时取得等号,所以,即的取值范围是.20、a=12-6,b=-23+12,或a=-12+6,b=19-12.【解题分析】∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1.若a>0,则,解得,若a<0,则,解得,综上可知,a=12-6,b=-23+12,或a=-12+6,b=19-12.21、(Ⅰ)10(Ⅱ)详见解析【解题分析】(Ⅰ)由年销售量为a台,按利润的计算公式求得利润,再由利润大于等于0,分离参数a求解;(Ⅱ)分别写出投资生产甲、乙两种工业设备的利润函数,由函数的单调性及二次函数的性质求函数的最大值,然后作出比较得答案【题目详解】(Ⅰ)由年销售a台甲设备,公司年获利y1=50a-100-am,由y1=50a-100-am≥0(30≤m≤40),得a≥(30≤m≤40),函数f(m)=在[30,40]上为增函数,则f(m)max=10,∴a≥10则对任意m∈[30,40],公司投资生产都不会赔本,a的值为10台;(Ⅱ)由年销售量为x台,按利润的计算公式,有生产甲、乙两设备的年利润y1,y2分别为:y1=50x-(100+mx)=(50-m)x-100,0≤x≤200且x∈Ny2=90x-(200+40x)-0.25x2=-0.25x2+50x-200=-0.25(x-100)2+2300,0≤x≤120,x∈N∵30≤m≤40,∴50-m>0,∴y1=(50-m)x-100为增函数,又∵0≤x≤200,x∈N,∴x=200时,生产甲设备的最大年利润为(50-m)×200-100=9900-200m(万元)又y2=-0.25(x-100)2+2300,0≤x≤

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论