2024届湖南省衡阳县江山学校数学高一上期末调研试题含解析_第1页
2024届湖南省衡阳县江山学校数学高一上期末调研试题含解析_第2页
2024届湖南省衡阳县江山学校数学高一上期末调研试题含解析_第3页
2024届湖南省衡阳县江山学校数学高一上期末调研试题含解析_第4页
2024届湖南省衡阳县江山学校数学高一上期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省衡阳县江山学校数学高一上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示,则该几何体的体积为()A.16 B.15C.18 D.172.设函数则A.1 B.4C.5 D.93.若,则()A. B.C. D.4.设和两个集合,定义集合,且,如果,,那么A. B.C. D.5.已知,,,则A. B.C. D.6.函数的图象如图所示,则()A. B.C. D.7.已知函数的图象上的每一点的纵坐标扩大到原来的倍,横坐标扩大到原来的倍,然后把所得的图象沿轴向右平移个单位,这样得到的曲线和的图象相同,则已知函数的解析式为A B.C. D.8.已知圆:与圆:,则两圆的位置关系是A.相交 B.相离C.内切 D.外切9.关于函数的叙述中,正确的有()①的最小正周期为;②在区间内单调递增;③是偶函数;④的图象关于点对称.A.①③ B.①④C.②③ D.②④10.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3 B.1C.-1 D.-3二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,为偶函数,则______12.若函数在区间上是增函数,则实数取值范围是______13.已知,则函数的最大值是__________14.已知直线与两坐标轴所围成的三角形的面积为1,则实数值是____________15.已知函数,现有如下几个命题:①该函数为偶函数;

②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数的值域为.其中正确命题的编号为______16.函数的反函数为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,.(1)求的值;(2)求的值:(3)求的值.18.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.19.某生物研究者于元旦在湖中放入一些凤眼莲,这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲覆盖面积为24m2,三月底测得覆盖面积为36m2,凤眼莲覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型与可供选择(1)试判断哪个函数模型更合适,并求出该模型的解析式;(2)求凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份(参考数据:lg2≈03010,lg3≈0.4771)20.某中学有初中学生1800人,高中学生1200人,为了解全校学生本学期开学以来(60天)的课外阅读时间,学校采用分层抽样方法,从中抽取100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”按学生的课外阅读时间(单位:时)各分为5组[0,10)、[10,20)、[20,30)、[30,40)、[40,50],得到频率分布直方图如图所示.(1)估计全校学生中课外阅读时间在[30,40)小时内的总人数是多少;(2)从课外阅读时间不足10小时的样本学生中随机抽取3人,求至少有2个初中生的概率;(3)国家规定,初中学生平均每人每天课外阅读时间不少于半个小时.若该校初中学生课外阅读时间小于国家标准,则学校应适当增加课外阅读时间,根据以上抽样调查数据,该校是否需要增加初中学生的课外阅读时间?并说明理由.21.设全集为,集合,(1)分别求,;(2)已知,若,求实数的取值范围构成的集合

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由三视图还原的几何体如图所示,结合长方体的体积公式计算即可.【题目详解】由图可知,该几何体是在一个长方体的右上角挖去一个小长方体,如图,故该几何体的体积为故选:B2、C【解题分析】根据题意,由函数的解析式求出与的值,相加即可得答案【题目详解】根据题意,函数,则,又由,则,则;故选C【题目点拨】本题考查对数的运算,及函数求值问题,其中解答中熟记对数的运算,以及合理利用分段函数的解析式求解是解答的关键,着重考查了推理与计算能力,属于基础题3、A【解题分析】应用辅助角公式将条件化为,再应用诱导公式求.【题目详解】由题设,,则,又.故选:A4、D【解题分析】根据的定义,可求出,,然后即可求出【题目详解】解:,;∴.故选D.【题目点拨】考查描述法的定义,指数函数的单调性,正弦函数的值域,属于基础题5、D【解题分析】容易看出,,从而可得出a,b,c的大小关系.【题目详解】,,;.故选D.【题目点拨】考查指数函数和对数函数的单调性,以及增函数和减函数的定义,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.6、C【解题分析】根据正弦型函数图象与性质,即可求解.【题目详解】由图可知:,所以,故,又,可求得,,由可得故选:C.7、B【解题分析】分析:将.的图象轴向左平移个单位,然后把所得的图象上的每一点的纵坐标变为原来的四分之一倍,横坐标变为原来的二分之一倍,即可得到函数的图象,从而可得结果.详解:利用逆过程:将.的图象轴向左平移个单位,得到的图象;将的图象上的每一点的纵坐标变为原来的四分之一倍得到的图象;将的图象上的每一点的横坐标变为原来的四分之一倍得到的图象,所以函数的解析式为,故选B.点睛:本题主要考查了三角函数图象变换,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8、C【解题分析】分析:求出圆心的距离,与半径的和差的绝对值比较得出结论详解:圆,圆,,所以内切.故选C点睛:两圆的位置关系判断如下:设圆心距为,半径分别为,则:,内含;,内切;,相交;,外切;,外离9、C【解题分析】应用差角余弦公式、二倍角正余弦公式及辅助角公式可得,再根据正弦型函数的性质,结合各项描述判断正误即可.【题目详解】,∴最小正周期,①错误;令,则在上递增,显然当时,②正确;,易知为偶函数,③正确;令,则,,易知的图象关于对称,④错误;故选:C10、D【解题分析】∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=3∴f(-1)=-f(1)=-3故选D二、填空题:本大题共6小题,每小题5分,共30分。11、4【解题分析】利用二次函数为偶函数的性质得一次项系数为0,定义域关于原点对称,即可求得的值.【题目详解】由题意得:解得:故答案为:.【题目点拨】本题考查二次函数的性质,考查逻辑推理能力和运算求解能力,求解时注意隐含条件的挖掘.12、【解题分析】令,由题设易知在上为增函数,根据二次函数的性质列不等式组求的取值范围.【题目详解】由题设,令,而为增函数,∴要使在上是增函数,即在上为增函数,∴或,可得或,∴的取值范围是.故答案为:13、【解题分析】由函数变形为,再由基本不等式求得,从而有,即可得到答案.【题目详解】∵函数∴由基本不等式得,当且仅当,即时取等号.∴函数的最大值是故答案为.【题目点拨】本题主要考查线性规划的应用以及基本不等式的应用,.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).14、1或-1【解题分析】令x=0,得y=k;令y=0,得x=−2k.∴三角形面积S=|xy|=k2.又S=1,即k2=1,值是1或-1.15、②③【解题分析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.16、【解题分析】由题设可得,即可得反函数.【题目详解】由,可得,∴反函数为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】(1)同角三角函数平方关系求得,,再由及差角余弦公式求值即可.(2)由诱导公式、二倍角余弦公式可得,即可求值.(3)由(1)及和角正余弦公式求、,由(2)及平方关系求,最后应用差角余弦公式求,结合角的范围求.【小问1详解】由题设,,,∴,,又.【小问2详解】.【小问3详解】由,则,由,则,∴,,又,,则,∴,而,故.18、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【解题分析】(1)直接由题意分类写出2022年的利润(万元)关于年产量(百辆)的函数关系式;(2)分别利用配方法与基本不等式求出两段函数的最大值,求最大值中的最大者得结论【小问1详解】由题意得:当年产量为百辆时,全年销售额为万元,则,所以当时,当时,,所以【小问2详解】由(1)知:当时,,所以当时,取得最大值,最大值为1500万元;当时,,当且仅当,即时等号成立,因为,所以2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元.19、(1)选择较为合适;(2)6月【解题分析】(1)根据指数函数和幂函数的性质可得合适的函数的模型.(2)根据选择的函数模型可求最小月份.小问1详解】指数函数随着自变量的增大其函数的增长速度越大,幂函数随着自变量的增大其函数的增长速度越小,因为凤眼莲在湖中的蔓延速度越来越快,故选择较为合适.故,故,.所以.【小问2详解】由(1),放入面积为,令,则,故凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份为6月.20、(1)720人(2)(3)需要增加,理由见解析【解题分析】(1)由分层抽样的特点可分别求得抽取的初中生、高中生人数,由频率分布直方图的性质可知初中生、高中生课外阅读时间在,小时内的频率,然后由频数样本容量频率可分别得初中生、高中生课外阅读时间在,小时内的样本学生数,最后将两者相加即可(2)记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,由频数样本容量频率组距频率可分别得初中生、高中生中,阅读时间不足10个小时的学生人数,然后用列举法表示出随机抽取3人的所有可能结果以及事件的结果,从而得(3)同一组中的数据用该组区间中点值作为代表来计算样本中的所有初中生平均每天阅读时间,并与30小时比较大小,若小于30小时,则需要增加,否则不需要增加【小问1详解】由分层抽样知,抽取的初中生有人,高中生有人初中生中,课外阅读时间在,小时内的频率为:,学生人数为人高中生中,课外阅读时间在,小时内的频率为:,学生人数约有人,全校学生中课外阅读时间在,小时内学生总人数为人【小问2详解】记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,初中生中,阅读时间不足10个小时的学生人数为人,高中生中,阅读时间不足10个小时的学生人数为人记这3名初中生为,,,这2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论