广东省广州市2024届数学高一上期末教学质量检测试题含解析_第1页
广东省广州市2024届数学高一上期末教学质量检测试题含解析_第2页
广东省广州市2024届数学高一上期末教学质量检测试题含解析_第3页
广东省广州市2024届数学高一上期末教学质量检测试题含解析_第4页
广东省广州市2024届数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市2024届数学高一上期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象向左平移个单位,再将图象上各点的纵坐标不变,横坐标变为原来的,那么所得图象的函数表达式为A. B.C. D.2.化简A. B.C.1 D.3.设,则()A. B.aC. D.4.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC5.设全集U=1,2,3,4,5,6,7,8,9,集合A=2,4,6,8,那么A.9 B.1,3,5,7,9C.1,3,5 D.2,4,66.已知函数的图像如图所示,则函数与在同一坐标系中的图像是()A. B.C. D.7.设是两个不同的平面,是直线且,,若使成立,则需增加条件()A.是直线且, B.是异面直线,C.是相交直线且, D.是平行直线且,8.已知函数,若函数在上有3个零点,则m的取值范围为()A. B.C. D.9.如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它对应的方程为(其中记为不超过的最大整数),且过点,若葫芦曲线上一点到轴的距离为,则点到轴的距离为()A. B.C. D.10.函数的最小值和最大值分别为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则________.12.如图,在空间四边形中,平面平面,,,且,则与平面所成角的度数为________13.已知,点在直线上,且,则点的坐标为________14.已知函数则_______.15.函数的递减区间是__________.16.________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角,且.(1)求的值;(2)求的值.18.已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.19.已知为二次函数,且(1)求的表达式;(2)设,其中,m为常数且,求函数的最值20.已知圆经过两点,且圆心在直线上.(1)求圆的标准方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程.21.已知函数(I)若是第一象限角,且.求的值;(II)求使成立的x的取值集合

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】将函数的图象向左平移个单位后所得图象对应的的解析式为;再将图象上各点纵坐标不变,横坐标变为原来的,所得图象对应的解析式为.选B2、D【解题分析】先考虑分母化简,利用降次公式,正切的两角和与差公式打开,整理,可得答案【题目详解】化简分母得.故原式等于.故选D【题目点拨】本题主要考查了两角和与差公式以及倍角公式.属于基础题3、C【解题分析】由求出的值,再由诱导公式可求出答案【题目详解】因为,所以,所以,故选:C4、C【解题分析】由斜二测画法得到原三角形,结合其几何特征易得答案.【题目详解】由题意得到原△ABC的平面图为:其中,AD⊥BC,BD>DC,∴AB>AC>AD,∴△ABC的AB、AD、AC三条线段中最长的是AB,最短的是AD故选C【题目点拨】本题考查了斜二测画法,考查三角形中三条线段长的大小的比较,属于基础题5、B【解题分析】由补集的定义分析可得∁U【题目详解】根据题意,全集U=1,2,3,4,5,6,7,8,9,而A=则∁U故选:B6、B【解题分析】由函数的图象可得,函数的图象过点,分别代入函数式,,解得,函数与都是增函数,只有选项符合题意,故选B.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.7、C【解题分析】要使成立,需要其中一个面的两条相交直线与另一个面平行,是相交直线且,,,,由平面和平面平行的判定定理可得.故选C.8、A【解题分析】画出函数图像,分解因式得到,有一个解故有两个解,根据图像得到答案.【题目详解】画出函数的图像,如图所示:当时,即,有一个解;则有两个解,根据图像知:故选:【题目点拨】本题考查了函数的零点问题,画出函数图像,分解因式是解题的关键.9、C【解题分析】先根据点在曲线上求出,然后根据即可求得的值【题目详解】点在曲线上,可得:化简可得:可得:()解得:()若葫芦曲线上一点到轴的距离为,则等价于则有:可得:故选:C10、C【解题分析】2.∴当时,,当时,,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用诱导公式化简等式,可求出的值,将所求分式变形为,在所得分式的分子和分母中同时除以,将所求分式转化为只含的代数式,代值计算即可.【题目详解】,,,因此,.故答案为:.【题目点拨】本题考查利用诱导公式和弦化切思想求值,解题的关键就是求出的值,考查计算能力,属于基础题.12、【解题分析】首先利用面面垂直转化出线面垂直,进一步求出线面的夹角,最后通过解直角三角形求出结果.【题目详解】取BD中点O,连接AO,CO.因为AB=AD,所以,又平面平面,所以平面.因此,即为AC与平面所成的角,由于,,所以,又,所以【题目点拨】本题主要考查直线与平面所成的角,属于基础题型.13、,【解题分析】设点,得出向量,代入坐标运算即得的坐标,得到关于的方程,从而可得结果.【题目详解】设点,因为点在直线,且,,或,,即或,解得或;即点的坐标是,.【题目点拨】本题考查了平面向量线性运算的坐标表示以及平面向量的共线问题,意在考查对基础知识的掌握与应用,是基础题.14、【解题分析】根据分段函数解析式,由内而外,逐步计算,即可得出结果.【题目详解】∵,,则∴.故答案为:.15、【解题分析】先求出函数的定义域,再根据复合函数单调性“同增异减”原则求出函数的单调递减区间即可得出答案【题目详解】解:意可知,解得,所以的定义域是,令,对称轴是,在上是增函数,在是减函数,又在定义域上是增函数,是和的复合函数,的单调递减区间是,故答案为:【题目点拨】本题主要考查对数型复合函数的单调区间,属于基础题16、【解题分析】根据对数运算、指数运算和特殊角的三角函数值,整理化简即可.【题目详解】.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)依题意可得,再根据同角三角函数的基本关系将弦化切,即可得到的方程,解得,再根据的范围求出;(2)根据同角三角函数的基本关系将弦化切,再代入计算可得;【小问1详解】解:由,有,有,整理为,有,解得或.又由,有,可得;【小问2详解】解:.18、(1)周期为,最大值为2,最小值为-1(2)【解题分析】(1)将函数利用倍角公式和辅助角公式化简为,再利用周期可得最小正周期,由找出对应范围,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系展开后代入可得值.试题解析:(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.考点:三角函数性质;同角间基本关系式;两角和的余弦公式19、(1)(2);【解题分析】(1)利用待定系数法可求的表达式;(2)利用换元法结合二次函数的单调性可求函数的最值【小问1详解】设,因为,所以整理的,故有,即,所以.【小问2详解】,设,故又,∵,所以,在为增函数,∴即时,;即时,20、(1)(2)或.【解题分析】(1)设圆的方程为,根据题意列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得圆心到直线的距离为,分类直线的斜率不存在和斜率存在两种情况讨论,即可求得直线的方程.【小问1详解】解:圆经过两点,且圆心在直线上,设圆的方程为,可得,解得,所以圆的方程为,即.【小问2详解】解:由圆,可得圆心,半径为,因为直线过点,且被圆截得的弦长为,可得,解得,即圆心到直线的距离为,当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,符合题意;当直线的斜率存在时,设直线的斜率为,可得直线的方程为,即由圆心到直线的距离为,解得,所以直线的方程为,即,综上可得,所求直线方程为或.21、(I)(II)【解题分析】该题属于三角函数的综合问题,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论