版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南安市南安一中2024届高一数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线,,若,则实数的值为A.8 B.2C. D.-22.已知角的终边经过点,且,则的值为()A. B.C. D.3.下列函数中,图象的一部分如图所示的是()A. B.C. D.4.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色.现从袋中随机抽取3个小球,设每个小球被抽到的机会均相等,则抽到白球或黑球的概率为A. B.C. D.5.如图,在直三棱柱ABC-A1B1C1中,AC=CC1,点D,O分别是AB,BC1的中点,则下列结论错误的是()A.与平面ABC所成的角为 B.平面C.与所成角为 D.6.若函数(,且)在上的最大值为4,且函数在上是减函数,则实数的取值范围为()A. B.C. D.7.经过点(2,1)的直线l到A(1,1),B(3,5)两点的距离相等,则直线l的方程为A.2x-y-3=0 B.x=2C.2x-y-3=0或x=2 D.都不对8.为了得到函数的图象,只需把函数的图象()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度9.已知函数为奇函数,则()A.-1 B.0C.1 D.210.已知的定义域为,则函数的定义域为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为______________12.设某几何体的三视图如图所示(单位:m),则该几何体的体积为________13.已知圆心为,且被直线截得的弦长为,则圆的方程为__________14.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积为___________.15.夏季为旅游旺季,青岛某酒店工作人员为了适时为游客准备食物,调整投入,减少浪费,他们统计了每个月的游客人数,发现每年各个月份的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,游客人数基本相同;②游客人数在2月份最少,在8月份最多,相差约200人;③2月份的游客约为60人,随后逐月递增直到8月份达到最多.则用一个正弦型三角函数描述一年中游客人数与月份之间关系为__________;需准备不少于210人的食物的月份数为__________.16.已知不等式的解集是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,若方程式在上有解,求实数的取值范围;(2)若在上恒成立,求实数的值范围.18.已知函数其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求的解析式;(2)当,求的值域19.已知.(1)求函数的最小正周期及在区间的最大值;(2)若,求的值.20.已知函数,(1)求不等式的解集;(2)若有两个不同的实数根,求a的取值范围21.如图,在四边形中,,,,为等边三角形,是的中点.设,.(1)用,表示,,(2)求与夹角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用两条直线平行的充要条件求解【题目详解】:∵直线l1:2x+y-2=0,l2:ax+4y+1=0,l1∥l2,∴,解得a=8故选A.【题目点拨】】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用2、B【解题分析】根据点,先表示出该点和原点之间的距离,再根据三角函数的定义列出等式,解方程可得答案.【题目详解】因为角的终边经过点,则,因为,所以,且,解得,故选:B3、D【解题分析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【题目详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D4、D【解题分析】分析:先求对立事件的概率:黑白都没有的概率,再用1减得结果.详解:从袋中球随机摸个,有,黑白都没有只有种,则抽到白或黑概率为选点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.5、A【解题分析】在A中,∠C1AC是AC1与平面ABC所成的角,从而AC1与平面ABC所成的角为45°;在B中,连结OD,OD∥AC1,由此得到AC1∥平面CDB1;在C中,由CC1∥BB1,得∠AC1C是AC1与BB1所成的角,从而AC1与BB1所成的角为45°;在D中,连结OD,则OD∥AC1【题目详解】由在直三棱柱ABC-A1B1C1中,AC=CC1,点D,O分别是AB,BC1的中点,知:在A中,∵CC1⊥平面ABC,∴∠C1AC是AC1与平面ABC所成的角,∵AC=CC1,∴∠C1AC=45°,∴AC1与平面ABC所成的角为45°,故A错误;在B中,连结OD,∵点D,O分别是AB,BC1的中点,∴OD∥AC1,∵OD⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1,故B正确;在C中,∵CC1∥BB1,∴∠AC1C是AC1与BB1所成的角,∵AC=CC1,∴∠AC1C=45°,∴AC1与BB1所成的角为45°,故C正确;在D中,连结OD,∵点D,O分别是AB,BC1的中点,∴OD∥AC1,∵OD⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1,故D正确故选A【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题6、A【解题分析】由函数(,且)在上的最大值为4,分情况讨论得到,从而可得函数单调递增,而在上是减函数,所以可得,由此可求得的取值范围【题目详解】当时,函数单调递增,据此可知:,满足题意;当时,函数单调递减,据此可知:,不合题意;故,函数单调递增,若函数在上是减函数,则,据此可得故选:A【题目点拨】此题考查对数函数的性质,考查指数函数的性质,考查分类讨论思想,属于基础题.7、C【解题分析】当直线l的斜率不存在时,直线x=2显然满足题意;当直线l的斜率存在时,设直线l的斜率为k则直线l为y-1=kx-2,即由A到直线l的距离等于B到直线l的距离得:-kk化简得:-k=k-4或k=k-4(无解),解得k=2∴直线l的方程为2x-y-3=0综上,直线l的方程为2x-y-3=0或x=2故选C8、A【解题分析】根据三角函数图象的变换求解即可【题目详解】由题意,把函数的图象向左平行移动个单位长度得到故选:A9、C【解题分析】利用函数是奇函数得到,然后利用方程求解,,则答案可求【题目详解】解:函数为奇函数,当时,,所以,所以,,故故选:C.10、B【解题分析】因为函数的定义域为,故函数有意义只需即可,解得,选B考点:1、函数的定义域的概念;2、复合函数求定义域二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解题分析】根据题中条件可先排除①,②两个图象,然后根据③,④两个图象都经过原点可求出a的两个值,再根据二次函数图象的开口方向就可确定a的值.【题目详解】∵b>0∴二次函数的对称轴不能为y轴,∴可排除掉①,②两个图象∵③,④两个图象都经过原点,∴a2﹣1=0,∴a=±1∵当a=1时,二次函数图象的开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故答案为:-1【题目点拨】本题考查了二次函数的图象和性质,做题时注意题中条件的利用,合理地利用排除法解决选择题12、4【解题分析】根据三视图确定该几何体为三棱锥,由题中数据,以及棱锥的体积公式,即可求出结果.【题目详解】由三视图可得:该几何体为三棱锥,由题中数据可得:该三棱锥的底面是以为底边长,以为高的三角形,三棱锥的高为,因此该三棱锥的体积为:.故答案为:.【题目点拨】本题主要考查由几何体的三视图求体积的问题,熟记棱锥的结构特征,以及棱锥的体积公式即可,属于基础题型.13、【解题分析】由题意可得弦心距d=,故半径r=5,故圆C的方程为x2+(y+2)2=25,故答案为x2+(y+2)2=2514、【解题分析】计算出等边的边长,计算出由弧与所围成的弓形的面积,进而可求得勒洛三角形的面积.【题目详解】设等边三角形的边长为,则,解得,所以,由弧与所围成的弓形的面积为,所以该勒洛三角形的面积.故答案为:.15、①.②.5【解题分析】设函数为,根据题意,即可求得函数的解析式,再根据题意得出不等式,即可求解.【题目详解】设该函数为,根据条件①,可知这个函数的周期是12;由②可知,最小,最大,且,故该函数的振幅为100;由③可知,在上单调递增,且,所以,根据上述分析,可得,解得,且,解得,又由当时,最小,当时,最大,可得,且,又因为,所以,所以游客人数与月份之间的关系式为,由条件可知,化简得,可得,解得,因为,且,所以,即只有五个月份要准备不少于210人的食物.故答案为:;.16、【解题分析】结合指数函数的单调性、绝对值不等式的解法求得不等式的解集.详解】,,,或,解得或,所以不等式不等式的解集是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)将代入函数,根据函数单调性得到,计算函数值域得到答案.(2)根据函数定义域得到,考虑和两种情况,根据函数的单调性得到不等式,解不等式得到答案.【小问1详解】,,,故,即,函数上单调递增,故.【小问2详解】,且,解得.当时,,函数开口向上,对称轴为,故函数在上单调递增,故,解得或,故;当时,,函数开口向上,对称轴为,故在上单调递增,故,解得,,不成立.综上所述:.18、(1);(2)【解题分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入即可求得,把代入即可得到函数的解析式(2)根据x的范围进而可确定当的范围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域【题目详解】(1)由最低点为得A=2由x轴上相邻的两个交点之间的距离为得,即,由点在图象上的,,即,故又,故;(2),当,即时,取得最大值2;当,即时,取得最小值,故的值域为.19、(1)1;(2)【解题分析】(1)化简得f(x)=sin(2x),求出函数的最小正周期以及最大值;(2)由(1)知,,考虑x0的取值范围求出cos(2x0)的值,求出的值【题目详解】解:(1)∴,∴函数的最小正周期为T=π;∵
,故
单调增,单调减∴
所以
在区间的最大值是1.(2)∵,,∴,又所以,故【题目点拨】本题考查了三角函数的求值问题以及三角函数的图象与性质的应用问题,解题时应细心作答,以免出错,是基础题20、(1)(2)【解题分析】(1)利用三角恒等变换公式将化到最简形式,确定,在这个范围内解三角不等式即可;(2)确定在上的最值,根据有两个不同的实数根,得到a应满足的条件,解得答案.【小问1详解】原式化简后得,由,则∴,可得,即,故不等式的解集为【小问2详解】在上的单调递增区间为,单调递减区间为,当时,,,当时,,,当时,,,又有两个不同的实数根,则,∴,故a的取值范围为21、(1),;(2).【解题分析】(1)利用向量的线性运算即平面向量基本定理确定,与,的关系;(2)解法一:利用向量数量积运算公式求得向量夹角余弦值;解法二:建立平面直角坐标系,利用数量积的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年平新社区卫生服务中心公开招聘备考题库含答案详解
- 2026年广州市白云艺术中学美术临聘教师招聘备考题库有答案详解
- 2026年中国农科院郑果所桃资源与育种创新团队招聘备考题库及参考答案详解1套
- 2026年让桥梁成为地标的设计策略
- 2026年中国林场集团有限公司招聘备考题库完整答案详解
- 2026年东方蓝天钛金科技有限公司招聘备考题库附答案详解
- 2026年什邡市马祖中心卫生院护理人员招聘备考题库及一套完整答案详解
- 2026年强电与弱电设计的规范区别
- 2026年劳务派遣人员招聘(派遣至浙江大学公共管理学院)备考题库及完整答案详解1套
- 2026年广东省广晟仓储管理有限公司招聘备考题库及一套答案详解
- 2026年宁夏黄河农村商业银行科技人员社会招聘备考题库及完整答案详解1套
- 初三数学备课组年终工作总结
- 2026年尼勒克县辅警招聘考试备考题库必考题
- 湖南名校联考联合体2026届高三年级1月联考物理试卷+答案
- 2024年黑龙江三江美术职业学院单招职业适应性测试题库附答案解析
- 成都传媒集团招聘笔试题库2026
- 污泥处置合同协议
- 2025年苏州工业园区领军创业投资有限公司招聘备考题库及一套完整答案详解
- 乡村振兴视角下人工智能教育在初中英语阅读教学中的应用研究教学研究课题报告
- 2026广东深圳市检察机关招聘警务辅助人员13人备考笔试试题及答案解析
- 2026年中国礼品行业展望白皮书
评论
0/150
提交评论