2024届北京市清华附中高一上数学期末检测试题含解析_第1页
2024届北京市清华附中高一上数学期末检测试题含解析_第2页
2024届北京市清华附中高一上数学期末检测试题含解析_第3页
2024届北京市清华附中高一上数学期末检测试题含解析_第4页
2024届北京市清华附中高一上数学期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市清华附中高一上数学期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的值域为()A.(0,+∞) B.(-∞,1)C.(1,+∞) D.(0,1)2.对于实数,“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知向量,,若,则()A. B.C.2 D.34.函数f(x)=-x+tanx(<x<)的图象大致为()A. B.C. D.5.当时,函数(,),取得最小值,则关于函数,下列说法错误的是()A.是奇函数且图象关于点对称B.偶函数且图象关于点(π,0)对称C.是奇函数且图象关于直线对称D.是偶函数且图象关于直线对称6.已知指数函数(,且),且,则的取值范围()A. B.C. D.7.设奇函数在上单调递增,且,则不等式的解集是()A B.或C. D.或8.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. B.8C.6 D.9.过点,且圆心在直线上的圆的方程是()A. B.C. D.10.已知函数的零点,(),则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则满足的的取值范围是___________.12.若,则的终边所在的象限为______13.若集合有且仅有两个不同的子集,则实数=_______;14.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________15.已知函数是定义在上的奇函数,当时,,则的值为______16.已知函数,则下列命题正确的是______填上你认为正确的所有命题的序号①函数单调递增区间是;②函数的图象关于点对称;③函数的图象向左平移个单位长度后,所得的图象关于y轴对称,则m的最小值是;④若实数m使得方程在上恰好有三个实数解,,,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的最小值;(2)求函数的单调递增区间18.在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中且.设()若,,,求方程在区间内的解集()若函数满足:图象关于点对称,在处取得最小值,试确定、和应满足的与之等价的条件19.已知是定义在上的奇函数,当时,(1)求的解析式;(2)求不等式的解集.20.已知函数,.(1)求的最小正周期;(2)求在区间上的最大值和最小值.21.设圆的圆心在轴上,并且过两点.(1)求圆的方程;(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】将函数解析式变形为,再根据指数函数的值域可得结果.【题目详解】,因为,所以,所以,所以函数的值域为.故选:D2、B【解题分析】由于不等式的基本性质,“a>b”⇒“ac>bc”必须有c>0这一条件.解:主要考查不等式的性质.当c=0时显然左边无法推导出右边,但右边可以推出左边.故选B考点:不等式的性质点评:充分利用不等式的基本性质是推导不等关系的重要条件3、A【解题分析】先计算的坐标,再利用可得,即可求解.【题目详解】,因为,所以,解得:,故选:A4、D【解题分析】利用函数的奇偶性排除部分选项,再利用特殊值判断.【题目详解】因为,所以是奇函数,排除BC,又因为,排除A,故选:D5、C【解题分析】根据正弦型函数的性质逐一判断即可.【题目详解】因为当时,函数取得最小值,所以,因为,所以令,即,所以,设,因为,所以函数是奇函数,因此选项B、D不正确;因为,,所以,因此函数关于直线对称,因此选项A不正确,故选:C6、A【解题分析】根据指数函数的单调性可解决此题【题目详解】解:由指数函数(,且),且根据指数函数单调性可知所以,故选:A7、D【解题分析】由奇偶性可将所求不等式化为;利用奇偶性可判断出单调性和,分别在和的情况下,利用单调性解得结果.【题目详解】为奇函数,;又在上单调递增,,在上单调递增,;,即;当时,,;当时,,;的解集为或.故选:D.【题目点拨】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.8、B【解题分析】根据斜二测画法得出原图形四边形的性质,然后可计算周长【题目详解】由题意,所以原平面图形四边形中,,,,所以,所以四边形的周长为:故选:B9、B【解题分析】由题设得的中垂线方程为,其与交点即为所求圆心,并应用两点距离公式求半径,写出圆的方程即可.【题目详解】由题设,的中点坐标为,且,∴的中垂线方程为,联立,∴,可得,即圆心为,而,∴圆的方程是.故选:B10、D【解题分析】将函数化为,根据二次函数的性质函数的单调性,利用零点的存在性定理求出两个零点的分布,进而得出零点的取值范围,依次判断选项即可.【题目详解】由题意知,,则函数图象的对称轴为,所以函数在上单调递增,在上单调递减,又,,,,所以,因为,,所以,所以,故A错误;,故B错误;,故C错误;,故D正确.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】∵在x∈(0,+∞)上是减函数,f(1)=0,∴0<3-x<1,解得2<x<3.12、第一或第三象限【解题分析】将表达式化简,,二者相等,只需满足与同号即可,从而判断角所在的象限.【题目详解】由,,若,只需满足,即与同号,因此的终边在第一或第三象限.故答案为:第一或第三象限.13、或.【解题分析】根据集合的子集个数确定出方程解的情况,由此求解出参数值.【题目详解】因为集合仅有两个不同子集,所以集合中仅有个元素,当时,,所以,满足要求;当时,,所以,此时方程解为,即,满足要求,所以或,故答案:或.14、6【解题分析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【题目详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【题目点拨】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.15、1【解题分析】根据题意,由函数在(﹣∞,0)上的解析式可得f(﹣1)的值,又由函数为奇函数可得f(1)=﹣f(﹣1),即可得答案【题目详解】根据题意,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(﹣1)=2×(﹣1)3+(﹣1)2=﹣1,又由函数奇函数,则f(1)=﹣f(﹣1)=1;故答案为1【题目点拨】本题考查函数奇偶性的应用,注意利用奇偶性明确f(1)与f(﹣1)的关系16、①③④【解题分析】先利用辅助角公式化简,再根据函数,结合三角函数的性质及图形,对各选项依次判断即可【题目详解】①,令,所以,因为,所以令,则,所以单调增区间是,故正确;②因为,所以不是对称中心,故错误;③的图象向左平移个单位长度后得到,且是偶函数,所以,所以且,所以时,,故正确;④函数,故错误;⑤因为,作出在上的图象如图所示:与有且仅有三个交点:所以,又因为时,且关于对称,所以,所以,故正确;故选:①③⑤三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)利用三角函数恒等变换对函数进行化简,根据正弦型三角函数性质求解函数的最小值即可;(2)利用正弦函数的单调性,整体代换求解函数的单调递增区间即可.【小问1详解】解析:(1),∴当时取得最小值【小问2详解】(2)由(1)得,,令,得函数的单调递增区间为18、(1)解集为;(2)见解析.【解题分析】分析:()由平面向量数量积公式、结合辅助角公式可得,令,从而可得结果;()“图象关于点对称,且在处取得最小值”.因此,根据三角函数的图象特征可以知道,,故有,∴,,当且仅当,时,的图象关于点对称;此时,,对讨论两种情况可得使得函数满足“图象关于点对称,且在处取得最小值的充要条件”是“,时,,;或当时,,”.详解:()根据题意,当,,时,,,则有或,即或,又因为,故在内解集为()解:因为,设周期因为函数须满足“图象关于点对称,且在处取得最小值”因此,根据三角函数的图象特征可以知道,,故有,∴,,又因为,形如的函数的图象的对称中心都是的零点,故需满足,而当,时,因为,;所以当且仅当,时,的图象关于点对称;此时,,∴,(i)当,时,,进一步要使处取得最小值,则有,∴,故,又,则有,,因此,由可得,(ii)当时,,进一步要使处取得最小值,则有;又,则有,因此,由,可得,综上,使得函数满足“图象关于点对称,且在处取得最小值的充要条件”是“,时,,;或当时,,”点睛:本题主要考查公式三角函数的图像和性质以及辅助角公式的应用,属于难题.利用该公式()可以求出:①的周期;②单调区间(利用正弦函数的单调区间可通过解不等式求得);③值域();④对称轴及对称中心(由可得对称轴方程,由可得对称中心横坐标.19、(1)(2).【解题分析】(1)当时,,利用,结合条件及可得解;(2)分析可得在上递增,进而得,从而得解.【题目详解】(1)当时,,则,为上的奇函数,且,;(2)因为当时,,所以在上递增,当时,,所以在上递增,所以在上递增,因为,所以由可得,所以不等式的解集为20、(1)(2)最大值为,最小值为【解题分析】(1)利用二倍角公式和两角和正弦公式化简再由周期公式计算可得答案;(2)根据当的范围可得,再计算出可得答案.【小问1详解】,所以的最小正周期.【小问2详解】当时,,所以,所以,所以在区间上的最大值为和最小值.21、(1)(2)或.【解题分析】(1)圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2)设M,N的中点为H,假如以为直径的圆能过原点,则.,设是直线与圆的交点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论