版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省铁岭市六校数学高一上期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,则()A. B.C. D.2.要证明命题“所有实数的平方都是正数”是假命题,只需()A.证明所有实数的平方都不是正数B.证明平方是正数的实数有无限多个C.至少找到一个实数,其平方是正数D.至少找到一个实数,其平方不是正数3.已知函数可表示为()xy2345则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增4.已知,,则下列说法正确的是()A. B.C. D.5.从800件产品中抽取6件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数开始往右读数(随机数表第7行至第9行的数如下),则抽取的6件产品的编号的75%分位数是()……844217533157245506887704744767217633502583921206766301637859169556671169105671751286735807443952387933211234297864560782524207443815510013429966027954A.105 B.556C.671 D.1696.方程的解所在的区间是A. B.C. D.7.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A.30° B.45°C.60° D.90°8.设,则a,b,c大小关系为()A. B.C. D.9.设则()A. B.C. D.10.将函数的图像向左、向下各平移1个单位长度,得到的函数图像,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与函数的图象相交,若自左至右的三个相邻交点依次为、、,且满足,则实数________12.已知,,则__________13.设定义在上的函数同时满足以下条件:①;②;③当时,,则=________.14.若直线与垂直,则________15.已知集合,若,求实数的值.16.设是定义在上且周期为2的函数,在区间上,其中.若,则的值是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,是正方形,平面,,,,分别是,,的中点()求四棱锥的体积()求证:平面平面()在线段上确定一点,使平面,并给出证明18.求下列关于的不等式的解集:(1);(2)19.如图,在四棱锥中,平面,,为棱上一点.(1)设为与的交点,若,求证:平面;(2)若,求证:20.已知,,,为坐标原点.(1)若,求的值;(2)若,且,求.21.已知函数(,且).(1)若,试比较与的大小,并说明理由;(2)若,且,,三点在函数的图像上,记的面积为,求的表达式,并求的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】求出集合A,再求A与B的交集即可.【题目详解】∵,∴.故选:D.2、D【解题分析】全称命题是假命题,则其否定一定是真命题,判断选项.【题目详解】命题“所有实数的平方都是正数”是全称命题,若其为假命题,那么命题的否定是真命题,所以只需“至少找到一个实数,其平方不是正数.故选:D3、B【解题分析】根据给定的对应值表,逐一分析各选项即可判断作答.【题目详解】由给定的对应值表知:,则,A不正确;函数的值域是,B正确,C不正确;当时,,即在区间上不单调,D不正确.故选:B4、C【解题分析】根据已知条件逐个分析判断【题目详解】对于A,因为,所以A错误,对于B,因为,所以集合A不是集合B的子集,所以B错误,对于C,因为,,所以,所以C正确,对于D,因为,,所以,所以D错误,故选:C5、C【解题分析】由随机表及编号规则确定抽取的6件产品编号,再从小到大排序,应用百分位数的求法求75%分位数.【题目详解】由题设,依次读取的编号为,根据编号规则易知:抽取的6件产品编号为,所以将它们从小到大排序为,故,所以75%分位数为.故选:C6、C【解题分析】根据零点存在性定理判定即可.【题目详解】设,,根据零点存在性定理可知方程的解所在的区间是.故选:C【题目点拨】本题主要考查了根据零点存在性定理判断零点所在的区间,属于基础题.7、C【解题分析】分别取AC.PC中点O.E.连OE,DE;则OE//PA,所以(或其补角)就是PA与BD所成的角;因PD⊥平面ABCD,所以PD⊥DC,PD⊥AD.设正方形ABCD边长为2,则PA=PC=BD=所以OD=OE=DE=,是正三角形,,故选C8、C【解题分析】利用有理指数幂和幂函数的单调性分别求得,,的范围即可得答案【题目详解】,,,又在上单调递增,,,故选:C9、D【解题分析】由指数函数、对数函数的单调性,并与0,1比较可得答案【题目详解】由指数、对数函数的性质可知:,,所以有.故选:D10、B【解题分析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【题目详解】由题意,将函数的图像向左、向下各平移1个单位长度,可得.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】设点、、的横坐标依次为、、,由题意可知,根据题意可得出关于、的方程组,分、两种情况讨论,求出的值,即可求得的值.【题目详解】设点、、的横坐标依次为、、,则,当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,;当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,.综上所述,或.故答案为:或.12、【解题分析】构造角,,再用两角和的余弦公式及二倍公式打开.【题目详解】,,,,,故答案为:【题目点拨】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.13、【解题分析】利用周期性和奇偶性,直接将的值转化到上的函数值,再利用解析式计算,即可求出结果【题目详解】依题意知:函数为奇函数且周期为2,则,,即.【题目点拨】本题主要考查函数性质——奇偶性和周期性的应用,以及已知解析式,求函数值,同时,考查了转化思想的应用14、【解题分析】根据两直线垂直的等价条件列方程,解方程即可求解.【题目详解】因为直线与垂直,所以,解得:,故答案为:.15、【解题分析】根据题意,可得或,然后根据结果进行验证即可.【题目详解】由题可知:集合,所以或,则或当时,,不符合集合元素的互异性,当时,,符合题意所以【题目点拨】本题考查元素与集合的关系求参数,考查计算能力,属基础题.16、##-0.4【解题分析】根据函数的周期性及可得的值,进而利用周期性即可求解的值.【题目详解】解:因为是定义在上且周期为2的函数,在区间上,所以,,又,即,解得,所以,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析(3)当为线段的中点时,满足使平面【解题分析】(1)根据线面垂直确定高线,再根据锥体体积公式求体积(2)先寻找线线平行,根据线面平行判定定理得线面平行,最后根据面面平行判定定理得结论(3)由题意可得平面,即,取线段的中点,则有,而,根据线面垂直判定定理得平面试题解析:()解:∵平面,∴()证明:∵,分别是,的中点∴,由正方形,∴,又平面,∴平面,同理可得:,可得平面,又,∴平面平面()解:当为线段中点时,满足使平面,下面给出证明:取的中点,连接,,∵,∴四点,,,四点共面,由平面,∴,又,,∴平面,∴,又为等腰三角形,为斜边中点,∴,又,∴平面,即平面点睛:(1)探索性问题通常用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.18、(1)或;(2)答案见解析.【解题分析】(1)将原不等式变形为,再利用分式不等式的解法可得原不等式的解集;(2)分、、三种情况讨论,利用二次不等式的解法可得原不等式的解集.【小问1详解】解:由得,解得或,故不等式的解集为或.【小问2详解】解:当时,原不等式即为,该不等式的解集为;当时,,原不等式即为.①若,则,原不等式的解集为或;②若,则,原不等式的解集为或.综上所述,当时,原不等式的解集为;当时,原不等式的解集为或;当时,原不等式解集为或.19、(1)见解析;(2)见解析.【解题分析】(1)只需证得,即可证得平面;(2)因为平面,平面,所以,即可证得平面,从而得证.试题解析:(1)在与中,因为,所以,又因为,所以在中,有,则.又因为平面,平面,所以平面.(2)因为平面,平面,所以.又因为,平面,平面,,所以平面,平面,所以20、(1)(2)【解题分析】(1)由向量平行的坐标运算列式直接求解即可;(2)先求得的坐标,利用坐标表示向量的模长,列方程求得,从而得,利用向量坐标表示数量积即可得解.【题目详解】(1)依题,,因,所以,所以(2)因为,所以,所以,因为,所以,所以,所以【题目点拨】本题主要考查了向量的坐标运算,包括共线、模长、数量积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论