2024届三明市重点中学高一上数学期末达标检测模拟试题含解析_第1页
2024届三明市重点中学高一上数学期末达标检测模拟试题含解析_第2页
2024届三明市重点中学高一上数学期末达标检测模拟试题含解析_第3页
2024届三明市重点中学高一上数学期末达标检测模拟试题含解析_第4页
2024届三明市重点中学高一上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届三明市重点中学高一上数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义域为的单调函数,且对任意实数,都有,则的值为()A.0 B.C. D.12.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是A. B.C. D.3.已知定义在R上的函数是奇函数且满足,,数列满足,且,(其中为的前n项和).则A.3 B.C. D.24.△ABC的内角、、的对边分别为、、,若,,,则()A. B.C. D.5.根据表中的数据,可以断定方程的一个根所在的区间是()x-101230.3712.727.3920.09A. B.C. D.6.设,且,则的最小值是()A. B.8C. D.167.设为所在平面内一点,若,则下列关系中正确的是A. B.C. D.8.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中BC=AB=2,则原平面图形的面积为()A. B.C. D.9.已知集合,,则A. B.C. D.10.已知,则的大小关系是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数的定义域为,则函数的定义域为______12.已知一个圆锥的母线长为1,其高与母线的夹角为45°,则该圆锥的体积为____________.13.已知,,若与的夹角是锐角,则的取值范围为______14.若函数,则_________;不等式的解集为__________15.已知函数f(x)的定义域是[-1,1],则函数f(log2x)的定义域为____16.若,,则a、b的大小关系是______.(用“<”连接)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.将函数的图象向左平移个单位后得到函数的图象,设函数(1)求函数的最小正周期;(2)若对任意恒成立,求实数m的取值范围18.自新冠疫情爆发以来,全球遭遇“缺芯”困境,同时以美国为首的西方国家对中国高科技企业进行打压及制裁.在这个艰难的时刻,我国某企业自主研发了一款具有自主知识产权的平板电脑,并从2021年起全面发售.经测算,生产该平板电脑每年需投入固定成本1350万元,每生产x(千台)电脑需要另投成本(万元),且,另外,每台平板电脑售价为0.6万元,假设每年生产的平板电脑能够全部售出.已知2021年共售出10000台平板电脑,企业获得年利润为1650万元(1)求企业获得年利润(万元)关于年产量x(千台)的函数关系式;(2)当年产量为多少(千台)时,企业所获年利润最大?并求最大年利润19.已知函数为奇函数(1)求实数k值;(2)设,证明:函数在上是减函数;(3)若函数,且在上只有一个零点,求实数m的取值范围20.已知函数.(1)求方程在上的解;(2)求证:对任意的,方程都有解21.已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】令,可以求得,即可求出解析式,进而求出函数值.【题目详解】根据题意,令,为常数,可得,且,所以时有,将代入,等式成立,所以是的一个解,因为随的增大而增大,所以可以判断为增函数,所以可知函数有唯一解,又因为,所以,即,所以.故选:B.【题目点拨】本题主要考查函数单调性和函数的表示方法,属于中档题.2、C【解题分析】先由三角函数的最值得或,再由得,进而可得单调增区间.【题目详解】因为对任意恒成立,所以,则或,当时,,则(舍去),当时,,则,符合题意,即,令,解得,即的单调递增区间是;故选C.【题目点拨】本题主要考查了三角函数的图像和性质,利用三角函数的性质确定解析式,属于中档题.3、A【解题分析】由奇函数满足可知该函数是周期为的奇函数,由递推关系可得:,两式做差有:,即,即数列构成首项为,公比为的等比数列,故:,综上有:,,则:.本题选择A选项.4、C【解题分析】由已知利用余弦定理可求的值,利用等腰三角形的性质可求的值.【题目详解】解:∵,,,∴由余弦定理可得,求得:c=1.∴∴.故选:C.【题目点拨】本题主要考查了余弦定理在解三角形中应用,属于基础题.5、D【解题分析】将与的值代入,找到使的,即可选出答案.【题目详解】时,.时,.时,.时,时,.因为.所以方程的一个根在区间内.故选:D.【题目点拨】本题考查零点存定理,函数连续,若存在,使,则函数在区间上至少有一个零点.属于基础题.6、B【解题分析】转化原式为,结合均值不等式即得解【题目详解】由题意,故则当且仅当,即时等号成立故选:B7、A【解题分析】∵∴−=3(−);∴=−.故选A.8、C【解题分析】先求出直观图中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【题目详解】直观图中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原来的平面图形上底长为2,下底为4,高为的直角梯形,∴该平面图形的面积为.故选:C9、C【解题分析】利用一元二次不等式的解法化简集合,再根据集合的基本运算进行求解即可【题目详解】因为,,所以,故选C【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.10、B【解题分析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果.【题目详解】,,,,故选B.【题目点拨】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用的定义域,求出的值域,再求x的取值范围.【题目详解】的定义域为即的定义域为故答案为:12、##【解题分析】由题可得,然后利用圆锥的体积公式即得.【题目详解】设圆锥的底面半径为r,高为h,由圆锥的母线长为1,其高与母线的夹角为45°,∴,∴该圆锥的体积为.故答案为:.13、【解题分析】利用坐标表示出和,根据夹角为锐角可得且与不共线,从而构造出不等式解得结果.【题目详解】由题意得:,解得:又与不共线,解得:本题正确结果:【题目点拨】本题考查根据向量夹角求解参数范围问题,易错点是忽略两向量共线的情况.14、①.②.【解题分析】代入求值即可求出,分与两种情况解不等式,最后求并集即可.【题目详解】,当时,,所以,解得:;当时,,解得:,所以,综上:.故答案为:,15、【解题分析】根据给定条件列出使函数f(log2x)有意义的不等式组,再求出其解集即可.【题目详解】因函数f(x)的定义域是[-1,1],则在f(log2x)中,必有,解不等式可得:,即,所以函数f(log2x)的定义域为.故答案为:16、【解题分析】容易看出,<0,>0,从而可得出a,b的大小关系【题目详解】,>0,,∴a<b故答案为a<b【题目点拨】本题主要考查对数函数的单调性,考查对数函数和指数函数的值域.意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期是;(2)【解题分析】(1)根据图象平移计算方法求出的表达式,然后计算,再用周期公式求解即可;(2)换元令,结合自变量范围求得函数的值域,再根据不等式即可求出参数范围【题目详解】解:(1)依题意得则所以函数的最小正周期是;(2)令,因为,所以,则,,即由题意知,解得,即实数m的取值范围是【题目点拨】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为或的形式,则最小正周期为,最大值为,最小值为或结合定义域求取最值18、(1)(2)当年产量为100(千台)时,企业所获年利润最大,最大年利润为万元.【解题分析】(1)根据2021年共售出10000台平板电板电脑,企业获得年利润为1650万元,求出,进而求出(万元)关于年产量x(千台)的函数关系式;(2)分别求出与所对应的函数关系式的最大值,比较后得到答案.【小问1详解】10000台平板电脑,即10千台,此时,根据题意得:,解得:,故当时,,当时,,综上:;【小问2详解】当时,,当时,取得最大值,;当时,,当且仅当,即时,等号成立,,因为,所以当年产量为100(千台)时,企业所获年利润最大,最大年利润为万元.19、(1)-1;(2)见解析;(3).【解题分析】(1)由于为奇函数,可得,即可得出;(2)利用对数函数的单调性和不等式的性质通过作差即可得出;(3)利用(2)函数的单调性、指数函数的单调性,以及零点存在性定理即可得出m取值范围【小问1详解】为奇函数,,即,,整理得,使无意义而舍去)【小问2详解】由(1),故,设,(a)(b)时,,,,(a)(b),在上时减函数;【小问3详解】由(2)知,h(x)在上单调递减,根据复合函数的单调性可知在递增,又∵y=在R上单调递增,在递增,在区间上只有一个零点,(4)(5)≤0,解得.20、(1)或;(2)证明见解析【解题分析】(1)根据诱导公式和正弦、余弦函数的性质可得答案;(2)令,分,,三种情况,分别根据零点存在定理可得证.【题目详解】解:(1)由,得,所以当时,上述方程的解为或,即方程在上的解为或;(2)证明:令,则,①当时,,令,则,即此时方程有解;②当时,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解;③当时,,,又∵在区间上是不间断的一条曲线,由零点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论