2024届江西省丰城四中高一上数学期末调研试题含解析_第1页
2024届江西省丰城四中高一上数学期末调研试题含解析_第2页
2024届江西省丰城四中高一上数学期末调研试题含解析_第3页
2024届江西省丰城四中高一上数学期末调研试题含解析_第4页
2024届江西省丰城四中高一上数学期末调研试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省丰城四中高一上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,小数记录法的数据V和五分记录法的数据L满足,已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(注:)A.0.6 B.0.8C.1.2 D.1.52.对于函数的图象,关于直线对称;关于点对称;可看作是把的图象向左平移个单位而得到;可看作是把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍而得到以上叙述正确的个数是A.1个 B.2个C.3个 D.4个3.设函数,则下列结论不正确的是()A.函数的值域是;B.点是函数的图像的一个对称中心;C.直线是函数的图像的一条对称轴;D.将函数的图像向右平移个单位长度后,所得图像对应的函数是偶函数4.已知直线:与直线:,则()A.,平行 B.,垂直C.,关于轴对称 D.,关于轴对称5.中国5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%6.已知,则三者的大小关系是A. B.C. D.7.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割,如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是两底角为的等腰三角形(另一种是两底角为的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,.根据这些信息,可得sin54°=()A. B.C. D.8.命题“,”的否定为()A., B.,C., D.,9.函数(且)的图像必经过点()A. B.C. D.10.设a,b是两条不同的直线,α,β是两个不同的平面,则下列正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为__________12.下列四个命题中:①若奇函数在上单调递减,则它在上单调递增②若偶函数在上单调递减,则它在上单调递增;③若函数为奇函数,那么函数的图象关于点中心对称;④若函数为偶函数,那么函数的图象关于直线轴对称;正确的命题的序号是___________.13.已知直线与两坐标轴所围成的三角形的面积为1,则实数值是____________14.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.15.若,则______16.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.,不等式的解集为(1)求实数b,c的值;(2)时,求的值域18.求同时满足条件:①与轴相切,②圆心在直线上,③直线被截得的弦长为的圆的方程19.已知能表示成一个奇函数和一个偶函数的和.(1)请分别求出与的解析式;(2)记,请判断函数的奇偶性和单调性,并分别说明理由.(3)若存在,使得不等式能成立,请求出实数的取值范围.20.已知.(1)求函数的定义域;(2)判断函数的奇偶性,并加以说明;(3)求的值.21.已知二次函数满足,且求的解析式;设,若存在实数a、b使得,求a的取值范围;若对任意,都有恒成立,求实数t的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】当时,即可得到答案.【题目详解】由题意可得当时故选:B2、B【解题分析】由判断;由判断;由的图象向左平移个单位,得到的图象判断;由的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象判断.【题目详解】对于函数的图象,令,求得,不是最值,故不正确;令,求得,可得的图象关于点对称,故正确;把的图象向左平移个单位,得到的图象,故不正确;把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象,故正确,故选B【题目点拨】本题通过对多个命题真假的判断,综合考查三角函数的对称性以及三角函数的图象的变换规律,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.3、B【解题分析】根据余弦函数的性质一一判断即可;【题目详解】解:因为,,所以,即函数的值域是,故A正确;因为,所以函数关于对称,故B错误;因为,所以函数关于直线对称,故C正确;将函数的图像向右平移个单位长度得到为偶函数,故D正确;故选:B4、D【解题分析】根据题意,可知两条直线都经过轴上的同一点,且两条直线的斜率互为相反数,即可得两条直线的对称关系.【题目详解】因为,都经过轴上的点,且斜率互为相反数,所以,关于轴对称.故选:D【题目点拨】本题考查了两条直线的位置关系,关于轴对称的直线方程特征,属于基础题.5、B【解题分析】根据所给公式、及对数的运算法则代入计算可得;【题目详解】解:当时,,当时,,∴,∴约增加了30%.故选:B6、C【解题分析】a=log30.2<0,b=30.2>1,c=0.30.2∈(0,1),∴a<c<b故选C点睛:这个题目考查的是比较指数和对数值的大小;一般比较大小的题目,常用的方法有:先估算一下每个数值,看能否根据估算值直接比大小;估算不行的话再找中间量,经常和0,1,-1比较;还可以构造函数,利用函数的单调性来比较大小.7、C【解题分析】先求出,再借助倍角公式求出,通过诱导公式求出sin54°.【题目详解】正五边形的一个内角为,则,,,所以故选:C.8、C【解题分析】由全称命题的否定是特称命题可得答案.【题目详解】根据全称命题的否定是特称命题,所以“,”的否定为“,”.故选:C.9、D【解题分析】根据指数函数的性质,求出其过的定点【题目详解】解:∵(且),且令得,则函数图象必过点,故选:D10、D【解题分析】由空间中直线、平面的位置关系逐一判断即可得解.【题目详解】解:由a,b是两条不同的直线,α,β是两个不同的平面,知:在A中,若,,则或,故A错误;在B中,若,,则,故B错误;在C中,若,,则或,故C错误;在D中,若,,,则由面面垂直的判定定理得,故D正确;故选:D【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】真数大于0求定义域.【题目详解】由题意得:,解得:,所以定义域为.故答案为:12、②③【解题分析】根据奇函数、偶函数的性质可判断①②,结合平移变换可判断③④.【题目详解】奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性,故①错误,②正确;因为函数为奇函数,图象关于原点对称,的图象可以由的图象向右平移1个单位长度得到,故的图象关于点对称,故③正确;函数的图象可以由函数的图象向左平移1个单位长度得到,因为为偶函数,图象关于y轴对称,所以的图象关于直线轴对称,故④错误.故答案为:②③13、1或-1【解题分析】令x=0,得y=k;令y=0,得x=−2k.∴三角形面积S=|xy|=k2.又S=1,即k2=1,值是1或-1.14、【解题分析】设参加数学、物理、化学小组的同学组成的集合分别为,、,根据容斥原理可求出结果.【题目详解】设参加数学、物理、化学小组的同学组成的集合分别为,、,同时参加数学和化学小组的人数为,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为,如图所示:由图可知:,解得,所以同时参加数学和化学小组有人.故答案为:.15、【解题分析】由二倍角公式,商数关系得,再由诱导公式、商数关系变形求值式,代入已知可得【题目详解】,所以,故答案为:16、【解题分析】在圆C2上任取一点(x,y),则此点关于直线对称点(y+1,x-1)在圆C1:上,所以有(y+1+1)2+(x-1-1)2=1,即,所以答案为考点:点关于直线的对称点的求法点评:本题考查一曲线关于一直线对称的曲线方程的求法:在圆C2上任取一点(x,y),则此点关于直线的对称点(y+1,x-1)在圆C1上三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由题意,1和3是方程的两根,利用韦达定理即可求解;(2)利用二次函数的单调性即可求解.【小问1详解】解:由题意,1和3是方程的两根,所以,解得;【小问2详解】解:由(1)知,,所以当时,单调递减,当时,单调递增,所以,,所以值域为.18、或.【解题分析】根据题意,设圆心为,圆被直线截得的弦为为的中点,连结.由垂径定理和点到直线的距离公式,建立关于的方程并解出值,即可得到满足条件的圆的标准方程【题目详解】试题解析:设所求的圆的方程是,则圆心到直线的距离为,①由于所求的圆与x轴相切,所以②又因为所求圆心在直线上,则③联立①②③,解得,或.故所求的圆的方程是或.19、(1);(2)见解析;(3).【解题分析】(1)由函数方程组可求与的解析式.(2)利用奇函数的定义和函数单调性定义可证明为奇函数且为上的增函数.(3)根据(2)中的结果可以得到在上有解,参变分离后利用换元法可求的取值范围.【题目详解】(1)由已知可得,则,由为奇函数和为偶函数,上式可化为,联合,解得.(2)由(1)得定义域,①由,可知为上的奇函数.②由,设,则,因为,故,,故即,故在上单调递增(3)由为上的奇函数,则等价于,又由在上单调递增,则上式等价于,即,记,令,可得,易得当时,即时,由题意知,,故所求实数的取值范围是.【题目点拨】本题考查与指数函数有关的复合函数的单调性和奇偶性以及函数不等式有解,前者根据定义进行判断,后者利用单调性和奇偶性可转化为常见不等式有解,本题综合性较高.20、(1)(2)偶函数(3)【解题分析】(1)根据定义域的要求解出定义域即可;(2)奇偶性的证明首先定义域对称,再求解,得,所以为偶函数;(3)按照对数计算公式求解试题解析:(1)由得所以函数的域为(2)因为函数的域为又所以函数为偶函数(3)21、(1);(2)或;(3).【解题分析】利用待定系数法求出二次函数的解析式;求出函数的值域,再由题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论