广西南宁市马山县金伦中学2024届高一上数学期末复习检测模拟试题含解析_第1页
广西南宁市马山县金伦中学2024届高一上数学期末复习检测模拟试题含解析_第2页
广西南宁市马山县金伦中学2024届高一上数学期末复习检测模拟试题含解析_第3页
广西南宁市马山县金伦中学2024届高一上数学期末复习检测模拟试题含解析_第4页
广西南宁市马山县金伦中学2024届高一上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西南宁市马山县金伦中学2024届高一上数学期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设点关于坐标原点的对称点是B,则等于()A.4 B.C. D.22.定义域为R的偶函数满足对任意的,有=且当时,=,若函数=在(0,+上恰有六个零点,则实数的取值范围是A. B.C. D.3.已知函数,,则()A.的最大值为 B.在区间上只有个零点C.的最小正周期为 D.为图象的一条对称轴4.若,,,则A B.C. D.5.已知是幂函数,且在第一象限内是单调递减,则的值为()A.-3 B.2C.-3或2 D.36.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.27.下列函数中与是同一函数的是()(1)(2)(3)(4)(5)A.(1)(2) B.(2)(3)C.(2)(4) D.(3)(5)8.已知函数,,其中,若,,使得成立,则()A. B.C. D.9.已知,,则下列不等式中恒成立的是()A. B.C. D.10.四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角等于()A.30° B.45°C.60° D.90°二、填空题:本大题共6小题,每小题5分,共30分。11.设函数是定义在上的奇函数,且,则___________12.若,,则以、为根的一元二次方程可以是___________.(写出满足条件的一个一元二次方程即可)13.已知幂函数的图像过点,则___________.14.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_________.15.已知,则_____.16.已知集合,,则=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数在是增函数,求的取值范围;(2)若对于任意的,恒成立,求的取值范围.18.已知函数(1)若函数,且为偶函数,求实数的值;(2)若,,且的值域为,求的取值范围19.已知函数其中.(1)当a=0时,求f(x)的值域;(2)若f(x)有两个零点,求a的取值范围.20.已知函数(1)当时,求的取值范围;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数m的取值范围21.设函数的定义域为A,集合.(1);(2)若集合是的子集,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】求出点关于坐标原点的对称点是B,再利用两点之间的距离即可求得结果.【题目详解】点关于坐标原点的对称点是故选:A2、C【解题分析】因为=,且是定义域为R的偶函数,令,则,解得,所以有=,所以是周期为2的偶函数,因为当时,=,其图象为开口向下,顶点为(3,0)的抛物线,因为函数=在(0,+上恰有六个零点,令,因为所以,所以,要使函数=在(0,+上恰有六个零点,如图所示:只需要,解得.故选C.点睛:本题考查函数的零点及函数与方程,解答本题时要注意先根据函数给出的性质对称性和周期性,画出函数的图象,然后结合函数的零点个数即为函数和图象交点的个数,利用数形结合思想求得实数的取值范围.3、D【解题分析】首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;【题目详解】解:函数,可得的最大值为2,最小正周期为,故A、C错误;由可得,即,可知在区间上的零点为,故B错误;由,可知为图象的一条对称轴,故D正确故选:D4、B【解题分析】利用指数函数与对数函数的单调性分别求出的范围,即可得结果.【题目详解】根据指数函数的单调性可得,根据对数函数的单调性可得,则,故选B.【题目点拨】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.5、A【解题分析】根据幂函数的定义判断即可【题目详解】由是幂函数,知,解得或.∵该函数在第一象限内是单调递减的,∴.故.故选:A.【题目点拨】本题考查了幂函数的定义以及函数的单调性问题,属于基础题6、B【解题分析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【题目详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【题目点拨】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力7、C【解题分析】将5个函数的解析式化简后,根据相等函数的判定方法分析,即可得出结果.【题目详解】(1)与定义域相同,对应关系不同,不是同一函数;(2)与的定义域相同,对应关系一致,是同一函数;(3)与定义与相同,对应关系不同,不是同一函数;(4)与定义相同,对应关系一致,是同一函数;(5)与对应关系不同,不是同一函数;故选:C.8、B【解题分析】首先已知等式变形为,构造两个函数,,问题可转化为这两个函数的值域之间的包含关系【题目详解】∵,,∴,又,∴,∴由得,,设,,则,,,∴的值域是值域的子集∵,时,,显然,(否则0属于的值域,但)∴,∴(*)由上讨论知同号,时,(*)式可化为,∴,,当时,(*)式可化为,∴,无解综上:故选:B【题目点拨】本题考查函数恒成立问题,解题关键是掌握转化与化归思想.首先是分离两个变量,然后构造新函数,问题转化为两个函数值域之间的包含关系.其次通过已知关系确定函数值域的形式(或者参数的一个范围),在这个范围解不等式才能非常简单地求解9、D【解题分析】直接利用特殊值检验及其不等式的性质判断即可.【题目详解】对于选项A,令,,但,则A错误;对于选项B,令,,但,则B错误;对于选项C,当时,,则C错误;对于选项D,有不等式的可加性得,则D正确,故选:D.10、B【解题分析】利用中位线定理可得GE∥SA,则∠GEF为异面直线EF与SA所成的角,判断三角形为等腰直角三角形即可.【题目详解】取AC中点G,连接EG,GF,FC设棱长为2,则CF=,而CE=1∴EF=,GE=1,GF=1而GE∥SA,∴∠GEF为异面直线EF与SA所成的角∵EF=,GE=1,GF=1∴△GEF为等腰直角三角形,故∠GEF=45°故选:B.【题目点拨】求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先由已知条件求出的函数关系式,也就是当时的函数关系式,再求得,然后求的值即可【题目详解】解:当时,,∴,∵函数是定义在上的奇函数,∴,∴,即由题意得,∴故答案为:【题目点拨】此题考查了分段函数求值,考查了奇函数的性质,属于基础题.12、【解题分析】利用两数和的完全平方公式得到,再利用根与系数的关系写出一个满足条件的方程.【题目详解】因为,,所以,即该一元二次方程的两根之和为3,两根之积为2,所以以、为根的一元二次方程可以是.13、【解题分析】先设幂函数解析式,再将代入即可求出的解析式,进而求得.【题目详解】设,幂函数的图像过点,,,,故答案为:14、【解题分析】求出函数关于轴对称的图像,利用数形结合可得到结论.【题目详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即则,解得,故答案为【题目点拨】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.15、3【解题分析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得.【题目详解】因,所以.故答案为:3.16、{-1,1,2};【解题分析】=={-1,1,2}三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由函数可知对称轴为,由单调性可知,即可求解;(2)整理问题为在时恒成立,设,则可转化问题为在时恒成立,讨论对称轴与的位置关系,进而求解.【小问1详解】因为函数,所以对称轴为,因为在是增函数,所以,解得【小问2详解】因为对于任意的,恒成立,即在时恒成立,所以在时恒成立,设,则对称轴为,即在时恒成立,当,即时,,解得;当,即时,,解得(舍去),故.18、(1)(2)【解题分析】(1)由题意得解析式,根据偶函数的定义,代入求解,即可得答案.(2)当时,可得解析式,根据值域为R,分别求和两种情况,结合一次、二次函数的性质,即可得答案.【小问1详解】由题可知∵是偶函数,∴,∴,即,,∴对一切恒成立,∴,即【小问2详解】当时,,当时,,其值域为,满足题意;当时,要使的值域为,则,所以,解得综上所述,的取值范围为19、(1);(2)【解题分析】(1)分别求出和的值域即可;(2)分两种情况讨论,若,有1个零点,时,有1个零点;若,无零点,时,有2个零点.【题目详解】(1)当时,,则当时,,当时,单调递增,则,综上,的值域为;(2)当时,,当时,单调递增,若,有1个零点,则,则时,也应有1个零点,所以,又,则;若,无零点,则,则时,有2个零点,所以;综上,a的取值范围为.20、(1)(2)【解题分析】(1)首先利用三角恒等变换公式化简函数解析式,再根据的取值范围,求出的取值范围,最后根据正弦函数的性质计算可得;(2)依题意可得,再由(1)及正弦函数的性质计算可得;【小问1详解】解:因为即∵,∴,∴,∴,故的取值范围为【小问2详解】解:∵,∴由(1)知,∵有两个不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论