华南师大附中2024届数学高一上期末教学质量检测试题含解析_第1页
华南师大附中2024届数学高一上期末教学质量检测试题含解析_第2页
华南师大附中2024届数学高一上期末教学质量检测试题含解析_第3页
华南师大附中2024届数学高一上期末教学质量检测试题含解析_第4页
华南师大附中2024届数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

华南师大附中2024届数学高一上期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,且,则的最小值为()A.4 B.C. D.62.已知函数为R上的偶函数,若对于时,都有,且当时,,则等于()A.1 B.-1C. D.3.若∃x∈[0,3],使得不等式x2﹣2x+a≥0成立,则实数a的取值范围是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣34.在半径为cm的圆上,一扇形所对的圆心角为,则此扇形的面积为()A. B.C. D.5.函数的图像大致是A. B.C. D.6.已知实数,,,则,,的大小关系为()A. B.C. D.7.若点关于直线的对称点是,则直线在轴上的截距是A.1 B.2C.3 D.48.下列大小关系正确的是A. B.C. D.9.函数有()A.最大值 B.最小值C.最大值2 D.最小值210.将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减 B.在区间上单调递增C.在区间上单调递减 D.在区间上单调递增二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)的定义域是[-1,1],则函数f(log2x)的定义域为____12.已知是第四象限角且,则______________.13.若,,则______14.函数的定义域为_____________________15.给出以下四个结论:①若函数的定义域为,则函数的定义域是;②函数(其中,且)图象过定点;③当时,幂函数的图象是一条直线;④若,则的取值范围是;⑤若函数在区间上单调递减,则的取值范围是.其中所有正确结论的序号是___________.16.如图1是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图2的数学风车,则图2“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为_______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列满足,前项和.(1)求的通项公式(2)设等比数列满足,,求的通项公式及的前项和.18.如图,在扇形OAB中,半径OA=1,圆心角C是扇形弧上的动点,矩形CDEF内接于扇形,且OE=OF.记∠AOC=θ,求当角θ为何值时,矩形CDEF的面积S最大?并求出这个最大的面积.19.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.20.已知函数,(为常数).(1)当时,判断在的单调性,并用定义证明;(2)若对任意,不等式恒成立,求的取值范围;(3)讨论零点的个数.21.如图,已知多面体PABCDE的底面ABCD是边长为2的菱形,PA⊥底面ABCD,ED//PA,且PA=2ED=2(1)证明:平面PAC⊥平面PCE;(2)若直线PC与平面ABCD所成的角为45°,求直线CD与平面PCE所成角的正弦值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用基本不等式“1”的代换求目标式的最小值,注意等号成立条件.【题目详解】由,当且仅当时等号成立.故选:C2、A【解题分析】由已知确定函数的递推式,利用递推式与奇偶性计算即可【题目详解】当时,,则,所以当时,,所以又是偶函数,,所以故选:A3、D【解题分析】等价于二次函数的最大值不小于零,即可求出答案.【题目详解】设,,使得不等式成立,须,即,或,解得.故选:D【题目点拨】本题考查特称命题成立求参数的问题,等价转化是解题的关键,属于基础题.4、B【解题分析】由题意,代入扇形的面积公式计算即可.【题目详解】因为扇形的半径为,圆心角为,所以由扇形的面积公式得.故选:B5、A【解题分析】依题意,,函数为减函数,且由向右平移了一个单位,故选.点睛:本题主要考查对数函数的图像与性质,考查图像的平移变换.对于对数函数,当时,函数为减函数,图像过,当时,函数为增函数,图像过.函数与函数的图像可以通过平移得到,口诀是“左加右减”.在平移过程中要注意原来图像的边界.6、A【解题分析】利用指数函数和对数函数的单调性比较a三个数与0、1的大小关系,由此可得出a、b、c大小关系.【题目详解】解析:由题,,,即有.故选:A.7、D【解题分析】∵点A(1,1)关于直线y=kx+b的对称点是B(﹣3,3),由中点坐标公式得AB的中点坐标为,代入y=kx+b得①直线AB得斜率为,则k=2.代入①得,.∴直线y=kx+b为,解得:y=4.∴直线y=kx+b在y轴上的截距是4.故选D.8、C【解题分析】根据题意,由于那么根据与0,1的大小关系比较可知结论为,选C.考点:指数函数与对数函数的值域点评:主要是利用指数函数和对数函数的性质来比较大小,属于基础题9、D【解题分析】分离常数后,用基本不等式可解.【题目详解】(方法1),,则,当且仅当,即时,等号成立.(方法2)令,,,.将其代入,原函数可化为,当且仅当,即时等号成立,此时.故选:D10、D【解题分析】由条件根据函数的图象变换规律得到变换之后的函数解析式,再根据正弦函数的单调性判断即可【题目详解】解:将函数的图象向右平移个单位长度,得到,若,则,因为在上不单调,故在上不单调,故A、B错误;若,则,因为在上单调递增,故在上单调递增,故C错误,D正确;故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据给定条件列出使函数f(log2x)有意义的不等式组,再求出其解集即可.【题目详解】因函数f(x)的定义域是[-1,1],则在f(log2x)中,必有,解不等式可得:,即,所以函数f(log2x)的定义域为.故答案为:12、【解题分析】直接由平方关系求解即可.【题目详解】由是第四象限角,可得.故答案为:.13、【解题分析】利用指数的运算性质可求得结果.【题目详解】由指数的运算性质可得.故答案为:.14、【解题分析】,区间为.考点:函数的定义域15、①④⑤【解题分析】根据抽象函数的定义域,对数函数的性质、幂函数的定义、对数不等式的求解方法,以及复合函数单调性的讨论,对每一项进行逐一分析,即可判断和选择.【题目详解】对①:因为,,所以的定义域为,令,故,即的定义域为,故①正确;对②:当,,图象恒过定点,故②错误;对③:若,则的图象是两条射线,故③错误;对④:原不等式等价于,故(无解)或,解得,故④正确;对⑤:实数应满足,解得,故⑤正确;综上所述:正确结论的序号为①④⑤.【题目点拨】(1)抽象函数的定义域是一个难点,一般地,如果已知的定义域为,的定义域为,那么的定义域为;如果已知的定义域为,那么的定义域可取为.(2)形如的复合函数,如果已知其在某区间上是单调函数,我们不仅要考虑在给定区间上单调性,还要考虑到其在给定区间上总有成立.16、24:25【解题分析】设三角形三边的边长分别为,分别求出阴影部分面积和大正方形面积即可求解.【题目详解】解:由题意,“赵爽弦图”由四个全等的直角三角形围成,其中,设三角形三边的边长分别为,则大正方形的边长为5,所以大正方形的面积,如图,将延长到,则,所以,又到的距离即为到的距离,所以三角形的面积等于三角形的面积,即,所以“赵爽弦图”外面(图中阴影部分)的面积,所以“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为.故答案为:24:25.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),【解题分析】(1)设的公差为,则由已知条件得,化简得解得故通项公式,即(2)由(1)得.设的公比为,则,从而故的前项和18、当时,矩形的面积最大为【解题分析】由点向作垂线,垂足为,利用平面几何知识得到为等边三角形,然后利用表示出和,从而得到矩形的面积,利用三角函数求最值进行分析求解,即可得到答案【题目详解】解:由点向作垂线,垂足为,在中,,,由题意可知,,,所以为等边三角形,所以,则,所以,所以,,所以矩形的面积为,因为,所以当,即时,最大为所以当时,矩形的面积最大为19、(1)最大值为16米;(2)最小值为平方米.【解题分析】(1)设草坪的宽为x米,长为y米,依题意列出不等关系,求解即可;(2)表示,利用均值不等式,即得最小值.【题目详解】(1)设草坪的宽为x米,长为y米,由面积均为400平方米,得.因为矩形草坪的长比宽至少大9米,所以,所以,解得.又,所以.所以宽的最大值为16米.(2)记整个的绿化面积为S平方米,由题意可得(平方米)当且仅当米时,等号成立.所以整个绿化面积的最小值为平方米.20、(1)见解析;(2);(3)见解析.【解题分析】(1)利用函数的单调性的定义,即可证得函数的单调性,得到结论;(2)由得,转化为,设,利用二次函数的性质,即可求解.(3)把函数有个零点转化为方程有两个解,令,作的图像及直线图像,结合图象,即可求解,得到答案.【题目详解】(1)当时,且时,是单调递减的.证明:设,则又且,故当时,在上是单调递减的.(2)由得,变形为,即,设,令,则,由二次函数的性质,可得,所以,解得.(3)由有个零点可得有两个解,转化为方程有两个解,令,作的图像及直线图像有两个交点,由图像可得:i)当或,即或时,有个零点.ii)当或或时,由个零点;iii)当或时,有个零点.【题目点拨】本题主要考查了函数的单调性的判定,以及函数与方程的综合应用,其中解答中熟记函数的单调性的定义,以及合理分离参数和转化为图象的交点个数,结合图象求解是解答的关键,着重考查了转化思想,以及分类讨论思想的应用,试题有一定的综合性,属于中档试题.21、(1)见解析(2)2【解题分析】1连接BD,交AC于点O,设PC中点为F,连接OF,EF,先证出BD∥EF,再证出EF⊥平面PAC,,结合面面垂直的判定定理即可证平面PAC⊥平面PCE;2先证明∠PCA=45°,设CD的中点为M,连接AM,所以点P到平面CDE的距离与点A到平面CDE的距离相等,即h2解析:(1)证明:连接BD,交AC于点O,设PC中点为F,连接OF,EF∵O,F分别为AC,PC的中点,∴OF//PA,且OF=1∵DE//PA,且DE=1∴OF//DE,且OF=DE,∴四边形OFED为平行四边形,∴OD//EF,即BD//EF,∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,∵ABCD是菱形,∴BD⊥AC∵PA∩AC=A,∴BD⊥平面PAC,∵BD//EF,∴EF⊥平面PAC,∵FE⊂平面PCE,∴平面PAC⊥平面PCE(2)因为直线PC与平面ABCD所成角为45°,所以∠PCA=45°,所以AC=PA=2,所以AC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论