上海市浦东新区川沙中学2024届数学高一上期末质量检测模拟试题含解析_第1页
上海市浦东新区川沙中学2024届数学高一上期末质量检测模拟试题含解析_第2页
上海市浦东新区川沙中学2024届数学高一上期末质量检测模拟试题含解析_第3页
上海市浦东新区川沙中学2024届数学高一上期末质量检测模拟试题含解析_第4页
上海市浦东新区川沙中学2024届数学高一上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市浦东新区川沙中学2024届数学高一上期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.半径为的半圆卷成一个圆锥,则它的体积为()A. B.C. D.2.某几何体的三视图如图所示,则该几何体的表面积是A. B.C. D.3.,,,则()A. B.C. D.4.四名学生按任意次序站成一排,若不相邻的概率是()A. B.C. D.5.已知函数的定义域为,则函数的定义域为()A. B.C. D.6.在中,为边的中点,则()A. B.C. D.7.函数是A.周期为的奇函数 B.周期为的奇函数C.周期为的偶函数 D.周期为的偶函数8.已知关于的方程的两个实数根分别是、,若,则的取值范围为()A. B.C. D.9.两平行直线l1:3x+2y+1=0与l2:6mx+4y+m=0之间的距离为A.0 B.C. D.10.“”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知点,,则以线段为直径的圆的标准方程是__________12.在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,____________.13.不等式的解集为,则的取值范围是_________.14.已知为第四象限的角,,则________.15.已知是内一点,,记的面积为,的面积为,则__________16.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边过点(1)求的值;(2)若,求的值18.已知函数在一个周期内的图象如图所示.(1)求函数的最小正周期T及的解析式;(2)求函数的对称轴方程及单调递增区间;(3)将的图象向右平移个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数的图像,若在上有两个解,求a的取值范围.19.已知(其中a为常数,且)是偶函数.(1)求实数m的值;(2)证明方程有且仅有一个实数根,若这个唯一的实数根为,试比较与的大小.20.已知函数在区间上有最大值5和最小值2,求、的值21.已知向量,,,,函数,的最小正周期为(1)求的单调增区间;(2)方程;在上有且只有一个解,求实数n的取值范围;(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据题意可得圆锥母线长为,底面圆的半径为,求出圆锥高即可求出体积.【题目详解】半径为半圆卷成一个圆锥,可得圆锥母线长为,底面圆周长为,所以底面圆的半径为,圆锥的高为,所以圆锥的体积为.故选:A.2、A【解题分析】由三视图可知几何体是一个底面为梯形的棱柱,再求几何体的表面积得解.【题目详解】由三视图可知几何体是一个底面为直角梯形的棱柱,梯形的上底为1,下底为2,高为2,棱柱的高为2.由题可计算得梯形的另外一个腰长为.所以该几何体的表面积=.故答案为A【题目点拨】本题主要考查三视图找原图,考查几何体的表面积的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理能力.3、B【解题分析】根据对数函数和指数函数的单调性即可得出,,的大小关系【题目详解】,,,故选:4、B【解题分析】利用捆绑法求出相邻的概率即可求解.【题目详解】四名学生按任意次序站成一排共有,相邻的站法有,相邻的的概率,故不相邻的概率是.故选:B【题目点拨】本题考查了排列数以及捆绑法在排列中的应用,同时考查了古典概型的概率计算公式.5、B【解题分析】根据函数的定义域求出的范围,结合分母不为0求出函数的定义域即可【题目详解】由题意得:,解得:,由,解得:,故函数的定义域是,故选:B6、B【解题分析】由平面向量的三角形法则和数乘向量可得解【题目详解】由题意,故选:B【题目点拨】本题考查了平面向量的线性运算,考查了学生综合分析,数形结合的能力,属于基础题7、A【解题分析】对于函数y=sin,T=4π,且sin(-)=-sin.故选A8、D【解题分析】利用韦达定理结合对数的运算性质可求得的值,再由可求得实数的取值范围.【题目详解】由题意,知,因为,所以.又有两个实根、,所以,解得.故选:D.9、C【解题分析】根据两平行直线的系数之间的关系求出,把两直线的方程中的系数化为相同的,然后利用两平行直线间的距离公式,求得结果.【题目详解】直线l1与l2平行,所以,解得,所以直线l2的方程为:,直线:即,与直线:的距离为:.故选:C【题目点拨】本题考查直线平行的充要条件,两平行直线间的距离公式,注意系数必须统一,属于基础题.10、B【解题分析】解出不等式,进而根据不等式所对应集合间的关系即可得到答案.【题目详解】由,而是的真子集,所以“”是“”成立的必要不充分条件.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.12、【解题分析】因为角与角关于轴对称,所以,,所以,所以答案:13、[0,1)##0≤k<1【解题分析】分k=0和k≠0两种情况进行讨论.k≠0时,可看为函数恒成立,结合二次函数的图像性质即可求解.【题目详解】①当时,不等式可化为1>0,此时不等式的解集为,符合题意;②当时,要使得不等式的解集为,则满足,解得;综上可得,实数的取值范围是.故答案:.14、【解题分析】给两边平方先求出,然后利用完全平方公式求出,再利用公式可得结果.【题目详解】∵,两边平方得:,∴,∴,∵为第四象限角,∴,,∴,∴.故答案为:【题目点拨】此题考查的是同角三角函数的关系和二倍角公式,属于基础题.15、【解题分析】设BC中点为M,则,所以P到BC的距离为点A到BC距离的,故16、【解题分析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【题目详解】作出函数的图象,如图:结合图象可得:,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)-2.【解题分析】(1)先利用三角函数的坐标定义求出,再利用诱导公式求解;(2)求出,再利用差角的正切公式求解.【小问1详解】解:由于角的终边过点,由三角函数的定义可得,则【小问2详解】解:由已知得,则18、(1),;(2)对称轴为:,增区间为:;(3).【解题分析】(1)根据题意求出A,函数的周期,进而求出,再代入特殊点的坐标求得解析式;(2)结合函数的图象即可求出函数的对称轴,然后结合正弦函数的单调性求出的增区间;(3)根据题意先求出的解析式,进而作出函数的图象,然后通过数形结合求得答案.【小问1详解】由题意A=1,,则,所以,又因为图象过点,所以,而,则,于是.【小问2详解】结合图象可知,函数的对称轴为:,令,即函数增区间为:.【小问3详解】的图象向右平移个单位长度得到:,于是,如图所示:因为在上有两个解,所以.19、(1)(2)【解题分析】(1)由偶函数的定义得对任意的实数恒成立,进而整理得恒成立,故;(2)设,进而得唯一实数根,使得,即,故,再结合得得答案.【小问1详解】解:因为是偶函数,所以对于任意的实数,有,所以对任意的实数恒成立,即恒成立,所以,即,【小问2详解】解:设,因为当时,,所以在区间上无实数根,当时,因为,,所以,使得,又在上单调递减,所以存在唯一实数根;因为,所以,又,所以,所以.所以20、,.【解题分析】利用对称轴x=1,[1,3]是f(x)的递增区间及最大值5和最小值2可以找出关于a、b的表达式,求出a、b的值试题解析:依题意,的对称轴为,函数在上随着的增大而增大,故当时,该函数取得最大值,即,当时,该函数取得最小值,即,即,∴联立方程得,解得,.21、(1),(2)或(3)存在,且m取值范围为【解题分析】(1)函数,的最小正周期为.可得,即可求解的单调增区间(2)根据x在上求解的值域,即可求解实数n的取值范围;(3)由题意,求解最小值,利用换元法求解的最小值,即可求解m的范围【题目详解】(1)函数f(x)•1=2sin2(ωx)cos(2ωx)﹣1=sin(2ωx)cos(2ωx)=2sin(2ωx)∵f(x)的最小正周期为π.ω>0∴,∴ω=1那么f(x)的解析式f(x)=2sin(2x)令2x,k∈Z得:x∴f(x)的单调增区间为[,],k∈Z(2)方程f(x)﹣2n+1=0;在[0,]上有且只有一个解,转化为函数y=f(x)+1与函数y=2n只有一个交点∵x在[0,]上,∴(2x)那么函数y=f(x)+1=2sin(2x)+1的值域为[,3],结合图象可知函数y=f(x)+1与函数y=2n只有一个交点那么2n<2或2n=3,可得或n=(3)由(1)可知f(x)=2sin(2x)∴f(x2)min=﹣2实数m满足对任意x1∈[﹣1,1],都存在x2∈R,使得m()+1>f(x2)成立即m()+1>﹣2成立令ym()+1设t,那么()2+2=t2+2∵x1∈[﹣1,1],∴t∈[,],可得t2+mt+5>0在t∈[,]上成立令

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论