版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆阿瓦提县第四中学高一上数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是A.1 B.-2C.1或-2 D.2.已知扇形的周长为8,扇形圆心角的弧度数是2,则扇形的面积为()A.2 B.4C.6 D.83.已知是定义在上的奇函数,当时,,则当时,的表达式为()A. B.C. D.4.已知,则三者的大小关系是A. B.C. D.5.已知函数,则下列区间中含有的零点的是()A. B.C. D.6.函数与g(x)=-x+a的图象大致是A. B.C. D.7.已知在定义域上是减函数,且,则的取值范围为()A.(0,1) B.(-2,1)C.(0,) D.(0,2)8.若函数()在有最大值无最小值,则的取值范围是()A. B.C. D.9.若,则的大小关系是()A. B.C. D.10.下列哪组中的两个函数是同一函数()A与 B.与C.与 D.与二、填空题:本大题共6小题,每小题5分,共30分。11.要在半径cm的圆形金属板上截取一块扇形板,使弧AB的长为m,那么圆心角_________.(用弧度表示)12.直线与直线平行,则实数的值为_______.13.已知fx是定义域为R的奇函数,且当x>0时,fx=ln14.调查某高中1000名学生的肥胖情况,得到的数据如表:偏瘦正常肥胖女生人数88175y男生人数126211z若,则肥胖学生中男生不少于女生的概率为_________15.写出一个同时具有下列三个性质的函数:___________.①函数为指数函数;②单调递增;③.16.已知函数,,对任意,总存在使得成立,则实数a的取值范围是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数)满足,且.(1)求函数的解析式;(2)令,求函数在∈[0,2]上的最小值18.已知二次函数.(1)求的对称轴;(2)若,求的值及的最值.19.(1)计算:;(2)计算:20.(1)求直线与的交点的坐标;(2)求两条平行直线与间的距离21.如图,已知三棱锥中,,,为的中点,为的中点,且为正三角形.(1)求证:平面;(2)求证:平面;(3)若,,求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求【题目详解】①当时,两直线分别为和,此时两直线相交,不合题意②当时,两直线的斜率都存在,由直线平行可得,解得综上可得故选A【题目点拨】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且2、B【解题分析】由给定条件求出扇形半径和弧长,再由扇形面积公式求出面积得解.【题目详解】设扇形所在圆半径r,则扇形弧长,而,由此得,所以扇形的面积.故选:B3、D【解题分析】当,即时,根据当时,,结合函数的奇偶性即可得解.【题目详解】解:函数是定义在上的奇函数,,当时,,当,即时,.故选:D.4、A【解题分析】因为<,所以,选A.5、C【解题分析】分析函数的单调性,利用零点存在定理可得出结论.【题目详解】由于函数为增函数,函数在和上均为增函数,所以,函数在和上均为增函数.对于A选项,当时,,,此时,,所以,函数在上无零点;对于BCD选项,当时,,,由零点存在定理可知,函数的零点在区间内.故选:C.6、A【解题分析】因为直线是递减,所以可以排除选项,又因为函数单调递增时,,所以当时,,排除选项B,此时两函数的图象大致为选项,故选A.【方法点晴】本题通过对多个图象的选择考查函数的指数函数、一次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.7、A【解题分析】根据函数的单调性进行求解即可.【题目详解】因为在定义域上是减函数,所以由,故选:A8、B【解题分析】求出,根据题意结合正弦函数图象可得答案.【题目详解】∵,∴,根据题意结合正弦函数图象可得,解得.故选:B.9、C【解题分析】利用指数函数与对数函数的单调性,把各数与中间值0,1比较即得【题目详解】利用指数函数的单调性知:,即;利用指数函数的单调性知:,即;利用对数函数的单调性知:,即;所以故选:C10、D【解题分析】根据同一函数的概念,逐项判断,即可得出结果.【题目详解】A选项,的定义域为,的定义域为,定义域不同,故A错;B选项,定义域为,的定义域为,定义域不同,故B错;C选项,的定义域为,的定义域为,定义域不同,故C错;D选项,与的定义域都为,且,对应关系一致,故D正确.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由弧长公式变形可得:,代入计算即可.【题目详解】解:由题意可知:(弧度).故答案为:.12、【解题分析】根据直线一般式,两直线平行则有,代入即可求解.【题目详解】由题意,直线与直线平行,则有故答案为:【题目点拨】本题考查直线一般式方程下的平行公式,属于基础题.13、1【解题分析】首先根据x>0时fx的解析式求出f1【题目详解】因为当x>0时,fx=ln又因为fx是定义域为R的奇函数,所以f故答案为:1.14、【解题分析】先求得,然后利用列举法求得正确答案.【题目详解】依题意,依题意,记,则所有可能取值为,,,共种,其中肥胖学生中男生不少于女生的为,,,共种,故所求的概率为.故答案为:15、(答案不唯一)【解题分析】根据给定条件①可得函数的解析式,再利用另两个条件判断作答.【题目详解】因函数是指数函数,则令,且,于是得,由于单调递增,则,又,解得,取,所以.故答案为:(答案不唯一)16、【解题分析】根若对于任意的∈,总存在,使得g(x0)=f(x1)成立,得到函数f(x)在上值域是g(x)在上值域的子集,然后利用求函数值域之间的关系列出不等式,解此不等式组即可求得实数a的取值范围即可【题目详解】∵,∴f(0)≤f(x)≤f(1),即0≤f(x)≤4,即函数f(x)的值域为B=[0,4],若对于任意的∈,总存在,使得g(x0)=f(x1)成立,则函数f(x)在上值域是g(x)在上值域A的子集,即B⊆A①若a=0,g(x)=0,此时A={0},不满足条件②当a≠0时,在是增函数,g(x)∈[﹣+3a,],即A=[﹣+3a,],则,∴综上,实数a的取值范围是故答案为【题目点拨】本题主要考查了函数恒成立问题,以及函数的值域,同时考查了分类讨论的数学思想,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】(1)据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得(2)函数g(x)的图象是开口朝上,且以x=m为对称轴的抛物线,分当m≤0时,当0<m<2时,当m≥2时三种情况分别求出函数的最小值,可得答案试题解析:(1)设二次函数一般式(),代入条件化简,根据恒等条件得,,解得,,再根据,求.(2)①根据二次函数对称轴必在定义区间外得实数的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法.试题解析:(1)设二次函数(),则∴,,∴,又,∴.∴(2)①∵∴.又在上是单调函数,∴对称轴在区间的左侧或右侧,∴或②,,对称轴,当时,;当时,;当时,综上所述,18、(1)(2)的值是,最小值是,无最大值【解题分析】(1)根据二次函数的对称轴公式,即可得到结果;(2)由,可求出的值,再根据二次函数的开口和对称轴,即可求出最值.【小问1详解】解:因为二次函数,所以对称轴【小问2详解】解:因为,所以.所以.所以.因为,所以开口向上,又对称轴为,所以最小值为,无最大值.19、(1);(2).【解题分析】(1)由根式化为分数指数幂,再由幂的运算法则计算(2)利用对数的换底公式和运算法则计算【题目详解】(1)原式=8+0.1+1=9.1(2)原式==1+=1+2=320、(1);(2)4【解题分析】(1)联立直线方程求解即可得交点;(2)由平行直线间的距离公式求解.【题目详解】(1)联立得故所求交点的坐标为(2)两条平行直线与间的距离21、(1)见详解;(2)见详解;(3).【解题分析】(1)先证,可证平面.(2)先证,得,结合可证得平面.(3)等积转换,由,可求得体积.【题目详解】(1)证明:因为为的中点,为的中点,所以是的中位线,.又,,所以.(2)证明:因为为正三角形,为的中点,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东松山职业技术学院《家庭社会工作》2023-2024学年第一学期期末试卷
- 广东水利电力职业技术学院《地球化学》2023-2024学年第一学期期末试卷
- 广东石油化工学院《环境景观规划设计》2023-2024学年第一学期期末试卷
- 广东汕头幼儿师范高等专科学校《体育一羽毛球》2023-2024学年第一学期期末试卷
- 广东培正学院《细胞工程》2023-2024学年第一学期期末试卷
- 广东南方职业学院《太阳能建筑设计》2023-2024学年第一学期期末试卷
- 广东茂名农林科技职业学院《会展经济学》2023-2024学年第一学期期末试卷
- 大学生军事技能训练(同济大学)学习通测试及答案
- 【名师伴你行】2021届高考文科数学二轮复习提能专训16-统计与统计案例
- 【名师课堂-备课包】2013-2020学年高一下学期地理人教版必修2-单元测试-第1章-人口的变化B
- 初中数学新课程标准(2024年版)
- 期末测试卷(一)2024-2025学年 人教版PEP英语五年级上册(含答案含听力原文无听力音频)
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- 中华传统文化之戏曲瑰宝学习通超星期末考试答案章节答案2024年
- 装饰装修设备表
- 汉服娃衣创意设计与制作智慧树知到期末考试答案章节答案2024年四川文化产业职业学院
- 广东省中山市2023-2024学年四年级上学期期末数学试卷
- 8款-组织架构图(可编辑)
- 云南省教育科学规划课题开题报告 - 云南省教育科学研究院
- 工艺流程计算
- 城市供水问题与对策研究毕业论文
评论
0/150
提交评论