版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省红河州泸源中学高一数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设m,n是两条不同直线,,是两个不同的平面,下列命题正确的是A.,且,则B.,,,,则C.,,,则D.,且,则2.函数的图象大致是A. B.C. D.3.已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(-∞,-1) B.(-∞,1)C.(-1,0) D.[-1,0)4.已知二次函数在区间(2,3)内是单调函数,则实数的取值范围是()A.或 B.C.或 D.5.下列函数中与是同一函数的是()(1)(2)(3)(4)(5)A.(1)(2) B.(2)(3)C.(2)(4) D.(3)(5)6.已知函数且,则实数的范围()A. B.C. D.7.已知圆:与圆:,则两圆的公切线条数为A.1条 B.2条C.3条 D.4条8.函数,若,,,则()A. B.C. D.9.已知集合,,,则()A.{6,8} B.{2,3,6,8}C.{2} D.{2,6,8}10.不等式对一切恒成立,则实数a的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则的终边所在的象限为______12.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②若函数的图象关于直线对称,则;③函数在上单调递减,在上单调递增;④当时,函数有四个零点其中正确的是___________(填上所有正确说法的序号)13.已知函数,:①函数的图象关于点对称;②函数的最小正周期是;③把函数f(2x)图象上所有点向右平移个单位长度得到的函数图象的对称轴与函数y=图象的对称轴完全相同;④函数在R上的最大值为2.则以上结论正确的序号为_______________14.若正数x,y满足,则的最小值是_________15.已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是__.(请填写:相切、相交、相离)16.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正确命题的个数是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.一几何体按比例绘制的三视图如图所示(单位:).(1)试画出它的直观图(不写作图过程);(2)求它的表面积和体积.18.有三个条件:①;②且;③最小值为2且.从这三个条件中任选一个,补充在下面的问题中,并作答.问题:已知二次函数满足_________,.(1)求的解析式;(2)设函数,求的值域.注:如果选择多个条件分别解答,按第一个解答计分.19.已知角的终边经过点,,,求的值.20.设函数是定义在上的奇函数,当时,(1)确定实数的值并求函数在上的解析式;(2)求满足方程的的值.21.记函数=的定义域为A,g(x)=(a<1)的定义域为B.(1)求A;(2)若x∈A是x∈B的必要不充分条件,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】对每一个命题逐一判断得解.【题目详解】对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面或相交,故A不正确;对于B,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以B不成立对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C不正确;对于D,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m与n相交,且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题D正确故答案为D【题目点拨】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.2、A【解题分析】因为2、4是函数的零点,所以排除B、C;因为时,所以排除D,故选A3、D【解题分析】当x>0时,f(x)有一个零点,故当x≤0时只有一个实根,变量分离后进行计算可得答案.【题目详解】当x>0时,f(x)=3x-1有一个零点x=.因此当x≤0时,f(x)=ex+a=0只有一个实根,∴a=-ex(x≤0),函数y=-ex单调递减,则-1≤a<0.故选:D【题目点拨】本题考查由函数零点个数确定参数的取值,考查指数函数的性质,属于基础题.4、A【解题分析】根据开口方向和对称轴及二次函数f(x)=x2-2ax+1的单调区间求参数的取值范围即可.【题目详解】根据题意二次函数f(x)=x2-2ax+1开口向上,单调递增区间为,单调减区间,因此当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调增函数时a≤2,当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调减函数时a≥3,综上可得a≤2或a≥3.故选:A.5、C【解题分析】将5个函数的解析式化简后,根据相等函数的判定方法分析,即可得出结果.【题目详解】(1)与定义域相同,对应关系不同,不是同一函数;(2)与的定义域相同,对应关系一致,是同一函数;(3)与定义与相同,对应关系不同,不是同一函数;(4)与定义相同,对应关系一致,是同一函数;(5)与对应关系不同,不是同一函数;故选:C.6、B【解题分析】根据解析式得,进而得令,得为奇函数,,进而结合函数单调性求解即可.【题目详解】函数,定义域为,满足,所以,令,所以,所以奇函数,,函数在均为增函数,所以在为增函数,所以在为增函数,因为为奇函数,所以在为增函数,所以,解得.故选:B.7、D【解题分析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条【题目详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条故选D【题目点拨】本题考查了两圆的一般方程与位置关系应用问题,是基础题8、A【解题分析】首先判断,和的大小关系,然后根据函数的单调性,判断的大小关系.【题目详解】,,,,,,是上的减函数,.故选:A.9、A【解题分析】由已知,先有集合和集合求解出,再根据集合求解出即可.【题目详解】因为,,所以,又因为,所以.故选:A.10、B【解题分析】当时,得到不等式恒成立;当时,结合二次函数的性质,列出不等式组,即可求解.【题目详解】由题意,不等式对一切恒成立,当时,即时,不等式恒成立,符合题意;当时,即时,要使得不等式对一切恒成立,则满足,解得,综上,实数a的取值范围是.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、第一或第三象限【解题分析】将表达式化简,,二者相等,只需满足与同号即可,从而判断角所在的象限.【题目详解】由,,若,只需满足,即与同号,因此的终边在第一或第三象限.故答案为:第一或第三象限.12、②③【解题分析】①:根据平面向量夹角的性质进行求解判断;②:利用函数的对称性,结合两角和(差)的正余弦公式进行求解判断即可;③:利用导数的性质、函数的奇偶性进行求解判断即可.④:根据对数函数的性质,结合零点的定义进行求解判断即可【题目详解】①:因为与的夹角为钝角,所以有且与不能反向共线,因此有,当与反向共线时,,所以有且,因此本说法不正确;②:因为函数的图象关于直线对称,所以有,即,于是有:,化简,得,因为,所以,因此本说法正确;③:因为,所以函数偶函数,,当时,单调递增,即在上单调递增,又因为该函数是偶函数,所以该在上单调递减,因此本说法正确;④:,问题转化为函数与函数的交点个数问题,如图所示:当时,,此时有四个交点,当时,,所以交点的个数不是四个,因此本说法不正确,故答案为:②③13、②③④【解题分析】利用辅助角公式、二倍角公式化简函数、,再逐一分析各个命题,计算判断作答.【题目详解】依题意,函数,因,函数的图象关于点不对称,①不正确;,于是得的最小正周期是,②正确;,则把函数f(2x)图象上所有点向右平移个单位长度得到的函数,函数图象的对称轴与函数y=图象的对称轴完全相同,③正确;令,则,,当时,,所以函数在R上的最大值为2,④正确,所以结论正确的序号为②③④.故答案为:②③④【题目点拨】思路点睛:涉及求含有和的三角函数值域或最值问题,可以通过换元转化为二次函数在闭区间上的值域或最值问题解答.14、##【解题分析】由基本不等式结合得出最值.【题目详解】(当且仅当时,等号成立),即最小值为.故答案为:15、相交【解题分析】求得的圆心到直线的距离,与圆的半径比较大小,即可得出结论.【题目详解】圆的圆心为、半径为,圆心到直线的距离为,小于半径,所以直线和圆相交,故答案为相交.【题目点拨】本题主要考查直线和圆的位置关系的判断方法,点到直线的距离公式的应用,属于基础题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用判别式来解答.16、3【解题分析】如图所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC⊂平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案为:3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)直观图见解析;(2),.【解题分析】(1)由三视图直接画出它的直观图即可;(2)由三视图可知该几何体是长方体被截取一个角,分别计算其表面积和体积可得答案.【题目详解】解:(1)直观图如图所示.(2)由三视图可知该几何体是长方体被截取一个角,且该几何体的体积是以,,为棱的长方体的体积的.在直角梯形中,作,则是正方形,∴.在中,,,∴.∴.∴几何体的体积.∴该几何体的表面积为,体积为.【题目点拨】本题主要考查空间几何体的三视图与直观图、空间几何体的表面积与体积,考查学生的直观想象能力,数学计算能力,属于中档题.18、(1);(2).【解题分析】(1)若选择①,设代入,根据恒等式的思想可求得,得到的解析式;若选择②,设由,得,由,得出二次函数的对称轴即,再代入,解之可得的解析式;若选择③,设由,得,又恒成立,又,得出二次函数的对称轴解之即可;(2)由(1)知,根据二次函数的对称轴分析出上的单调性,可求得的值域.【题目详解】解:(1)若选择①,设则又因为即解得,又,所以解得,所以的解析式为;若选择②,设由,得,又,所以二次函数的对称轴即,又,所以解得所以的解析式为;若选择③,设由,得,又恒成立,又,所以二次函数的对称轴即,且解得所以的解析式为;(2)由(1)知,所以,因为对称轴所以在上单调递减,在上单调递增,故在上的值域为.【题目点拨】方法点睛:求函数解析式的方法:一.换元法:已知复合函数的解析式,求原函数的解析式,把看成一个整体t,进行换元,从而求出的方法,注意所换元的定义域的变化.二.配凑法:使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三.待定系数法:己知函数解析式的类型,可设其解析式的形式,根据己知条件建立关于待定系数的方程,从而求出函数解析式的方法.四.消去法(方程组法):方程组法求解析式的关键是根据己知方程中式子的特点,构造另一个方程.五.特殊值法:根据抽象函数的解析式的特征,进行对变量赋特殊值.19、.【解题分析】利用三角函数的定义可得,进而可求,利用同角关系式可求,再利用两角和的正切公式即得.【题目详解】∵角的终边经过点,∴,,∵,,∴,,∴20、(1),(2)或或【解题分析】(1)利用奇函数定义即可得到的值及函数在上的解析式;(2)分成两类,解指数型方程即可得到结果.【题目详解】(1)是定义在上的奇函数当时,,当时,设,则(2)当时,,令,得得解得是定义在上的奇函数所以当x<0时的根为:所以方程的根为:【题目点拨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东松山职业技术学院《家庭社会工作》2023-2024学年第一学期期末试卷
- 广东水利电力职业技术学院《地球化学》2023-2024学年第一学期期末试卷
- 广东石油化工学院《环境景观规划设计》2023-2024学年第一学期期末试卷
- 广东汕头幼儿师范高等专科学校《体育一羽毛球》2023-2024学年第一学期期末试卷
- 广东培正学院《细胞工程》2023-2024学年第一学期期末试卷
- 广东南方职业学院《太阳能建筑设计》2023-2024学年第一学期期末试卷
- 广东茂名农林科技职业学院《会展经济学》2023-2024学年第一学期期末试卷
- 大学生军事技能训练(同济大学)学习通测试及答案
- 【名师伴你行】2021届高考文科数学二轮复习提能专训16-统计与统计案例
- 【名师课堂-备课包】2013-2020学年高一下学期地理人教版必修2-单元测试-第1章-人口的变化B
- 初中数学新课程标准(2024年版)
- 期末测试卷(一)2024-2025学年 人教版PEP英语五年级上册(含答案含听力原文无听力音频)
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- 中华传统文化之戏曲瑰宝学习通超星期末考试答案章节答案2024年
- 装饰装修设备表
- 汉服娃衣创意设计与制作智慧树知到期末考试答案章节答案2024年四川文化产业职业学院
- 广东省中山市2023-2024学年四年级上学期期末数学试卷
- 8款-组织架构图(可编辑)
- 云南省教育科学规划课题开题报告 - 云南省教育科学研究院
- 工艺流程计算
- 城市供水问题与对策研究毕业论文
评论
0/150
提交评论