2024届江苏省常熟市高一上数学期末复习检测模拟试题含解析_第1页
2024届江苏省常熟市高一上数学期末复习检测模拟试题含解析_第2页
2024届江苏省常熟市高一上数学期末复习检测模拟试题含解析_第3页
2024届江苏省常熟市高一上数学期末复习检测模拟试题含解析_第4页
2024届江苏省常熟市高一上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省常熟市高一上数学期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义在R上的偶函数,且在区间单调递增.若实数a满足,则a的取值范围是A. B.C. D.2.已知函数(其中)的图象如下图所示,则的图象是()A. B.C. D.3.已知函数在上是增函数,则实数的取值范围为()A. B.C. D.4.已知为第二象限角,则的值是()A.3 B.C.1 D.5.函数的图像必经过点A.(0,2) B.(4,3)C.(4,2) D.(2,3)6.已知在正四面体ABCD中,E是AD的中点,P是棱AC上的一动点,BP+PE的最小值为,则该四面体内切球的体积为()A.π B.πC.4π D.π7.已知函数f(x)=有两不同的零点,则的取值范围是()A.(−∞,0) B.(0,+∞)C.(−1,0) D.(0,1)8.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.20139.若,则值为()A. B.C. D.710.若为所在平面内一点,,则形状是A.等腰三角形 B.直角三角形C.正三角形 D.以上答案均错二、填空题:本大题共6小题,每小题5分,共30分。11.如果,且,则化简为_____.12.已知函数则_______.13.已知向量,,若,,,则的值为__________14.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限15.已知,,且,则的最小值为______16.各条棱长均相等的四面体相邻两个面所成角的余弦值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(其中a为常数,且)是偶函数.(1)求实数m的值;(2)证明方程有且仅有一个实数根,若这个唯一的实数根为,试比较与的大小.18.(1)已知,求;(2)已知,,,是第三象限角,求的值.19.已知A(3,7)、B(3,-1)、C(9,-1),求△ABC的外接圆方程.20.已知,计算下列各式的值.(1);(2).21.已知函数,其中.(1)当时,求的值域和单调区间;(2)若存在单调递增区间,求a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】函数是定义在上的偶函数,∴,等价为),即.∵函数是定义在上的偶函数,且在区间单调递增,∴)等价为.即,∴,解得,故选项为C考点:(1)函数的奇偶性与单调性;(2)对数不等式.【思路点晴】本题主要考查对数的基本运算以及函数奇偶性和单调性的应用,综合考查函数性质的综合应用根据函数的奇偶数和单调性之间的关系,综合性较强.由偶函数结合对数的运算法则得:,即,结合单调性得:将不等式进行等价转化即可得到结论.2、A【解题分析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【题目详解】解:由图象可知:,因,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A3、D【解题分析】利用二次函数单调性,列式求解作答.【题目详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D4、C【解题分析】由为第二象限角,可得,再结合,化简即可.【题目详解】由题意,,因为为第二象限角,所以,所以.故选:C.5、B【解题分析】根据指数型函数的性质,即可确定其定点.【题目详解】令得,所以,因此函数过点(4,3).故选B【题目点拨】本题主要考查函数恒过定点的问题,熟记指数函数的性质即可,属于基础题型.6、D【解题分析】首先设正四面体的棱长为,将侧面和沿边展开成平面图形,根据题意得到的最小值为,从而得到,根据等体积转化得到内切球半径,再计算其体积即可.【题目详解】设正四面体的棱长为,将侧面和沿边展开成平面图形,如图所示:则的最小值为,解得.如图所示:为正四面体的高,,正四面体高.所以正四面体的体积.设正四面体内切球的球心为,半径为,如图所示:则到正四面体四个面的距离相等,都等于,所以正四面体的体积,解得.所以内切球的体积.故选:D7、A【解题分析】函数f(x)=有两不同的零点,可以转化为直线与函数的图象有两个不同的交点,构造不等式即可求得的取值范围.【题目详解】由题可知方程有两个不同的实数根,则直线与函数的图象有两个不同的交点,作出与的大致图象如下:不妨设,由图可知,,整理得,由基本不等式得,(当且仅当时等号成立)又,所以,解得,故选:A8、B【解题分析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为9、B【解题分析】根据两角和的正切公式,结合同角的三角函数关系式中商关系进行求解即可.【题目详解】由,所以,故选:B10、A【解题分析】根据向量的减法运算可化简已知等式为,从而得到三角形的中线和底边垂直,从而得到三角形形状.详解】三角形的中线和底边垂直是等腰三角形本题正确选项:【题目点拨】本题考查求解三角形形状的问题,关键是能够通过向量的线性运算得到数量积关系,根据数量积为零求得垂直关系.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由,且,得到是第二象限角,由此能化简【题目详解】解:∵,且,∴是第二象限角,∴故答案为:12、【解题分析】根据分段函数解析式,由内而外,逐步计算,即可得出结果.【题目详解】∵,,则∴.故答案为:.13、C【解题分析】分析:由,,,可得向量与平行,且,从而可得结果.详解:∵,,,∴向量与平行,且,∴.故答案为.点睛:本题主要考查共线向量的坐标运算,平面向量的数量积公式,意在考查对基本概念的理解与应用,属于中档题14、二【解题分析】由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限【题目详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号15、6【解题分析】由可知,要使取最小值,只需最小即可,故结合,求出的最小值即可求解.【题目详解】由,,得(当且仅当时,等号成立),又因,得,即,由,,解得,即,故.因此当时,取最小值6.故答案为:6.16、【解题分析】首先利用图像作出相邻两个面所成角,然后利用已知条件求出正四面体相邻两个面所成角的两边即可求解.【题目详解】由题意,四面体为正三棱锥,不妨设正三棱锥的边长为,过作平面,垂足为,取的中点,并连接、、、,如下图:由正四面体的性质可知,为底面正三角形的中心,从而,,∵为的中点,为正三角形,所以,,所以为正四面体相邻两个面所成角∵,∴易得,,∵平面,平面,∴,故.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由偶函数的定义得对任意的实数恒成立,进而整理得恒成立,故;(2)设,进而得唯一实数根,使得,即,故,再结合得得答案.【小问1详解】解:因为是偶函数,所以对于任意的实数,有,所以对任意的实数恒成立,即恒成立,所以,即,【小问2详解】解:设,因为当时,,所以在区间上无实数根,当时,因为,,所以,使得,又在上单调递减,所以存在唯一实数根;因为,所以,又,所以,所以.所以18、(1);(2).【解题分析】(1)根据诱导公式化简函数后代入求解即可;(2)根据同角三角函数的基本关系求出,利用两角差的余弦公式求解即可.【题目详解】(1)(2)由,,得又由,,得所以.19、【解题分析】设△ABC外接圆的方程为x2+y2+Dx+Ey+F=0,把A(1,0),B(0,1),C(3,4)代入,能求出△ABC外接圆的方程【题目详解】设外接圆的方程为.将ABC三点坐标带人方程得:解得圆的方程为【题目点拨】本题考查圆的方程的求法,解题时要认真审题,注意待定系数法的合理运用20、(1);(2).【解题分析】(1)将分子分母同除以,再将代入,得到要求式子的值(2)先将变形为,再将分子分母同除以,求得要求式子值【题目详解】∵,∴∴(1)将分子分母同除以,得到;(2)【题目点拨】本题主要考查同角三角函数的基本关系的应用,属于基础题21、(1)见解析(2)【解题分析】(1)利用换元法设,求出的范围,再由对数函数的性质得出值域,再结合复合函数的单调性得出的单调区间;(2)分别讨论,两种情况,结合复合函数的单调性以及二次函数的性质得出a的取值范围.【题目详解】(1)当时,设,由,解得即函数的定义域为,此时则,即的值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论