




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东禹城市综合高中2024届数学高一上期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是奇函数又在上有零点的是A. B.C D.2.已知,方程有三个实根,若,则实数A. B.C. D.3.若函数在定义域上的值域为,则()A. B.C. D.4.若,是第二象限角,则()A. B.3C.5 D.5.函数的单调递减区间是A. B.C. D.6.总体由编号为01,02,…,49,50的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第7行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为()附:第6行至第8行的随机数表274861987164414870862888851916207477011116302404297979919624512532114919730649167677873399746732263579003370A.11 B.24C.25 D.207.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B.C. D.8.在中,满足,则这个三角形是()A.正三角形 B.等腰三角形C.锐角三角形 D.钝角三角形9.若集合,,则()A. B.C. D.10.已知集合,集合,则集合A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)的定义域是[-1,1],则函数f(log2x)的定义域为____12.圆的圆心到直线的距离为______.13.两平行直线与之间的距离______.14.函数的单调递增区间是_________15.已知是定义在上奇函数,且函数为偶函数,当时,,则______16.函数单调递增区间为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,设函数=+(1)求函数的最小正周期和单调递增区间;(2)当时,求函数的值域18.如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动(Ⅰ)求三棱锥E-PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF19.已知函数的最小正周期为4,且满足(1)求的解析式(2)是否存在实数满足?若存在,请求出的取值范围;若不存在,请说明理由20.已知圆C过,两点,且圆心C在直线上(1)求圆C的方程;21.已知函数,函数的最小正周期为.(1)求函数的解析式,及当时,的值域;(2)当时,总有,使得,求实数m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】选项中的函数均为奇函数,其中函数与函数在上没有零点,所以选项不合题意,中函数为偶函数,不合题意;中函数的一个零点为,符合题意,故选D.2、B【解题分析】判断f(x)与2的大小,化简方程求出x1、x2、x3的值,根据得x3﹣x2=2(x2﹣x1)得出a的值【题目详解】由1﹣x2≥0得x2≤1,则﹣1≤x≤1,,当x<0时,由f(x)=2,即﹣2x=2得x2=1﹣x2,即2x2=1,x2,则x,①当﹣1≤x时,有f(x)≥2,原方程可化为f(x)+2f(x)﹣22ax﹣4=0,即﹣4x﹣2ax﹣4=0,得x,由﹣1解得:0≤a≤22②当x≤1时,f(x)<2,原方程可化为42ax﹣4=0,化简得(a2+4)x2+4ax=0,解得x=0,或x,又0≤a≤22,∴0∴x1,x2,x3=0由x3﹣x2=2(x2﹣x1),得2(),解得a(舍)或a因此,所求实数a故选B【题目点拨】本题主要考查函数与方程的应用,根据分段函数的表达式结合绝对值的应用,确定三个根x1、x2、x3的值是解决本题的关键.综合性较强,难度较大3、A【解题分析】的对称轴为,且,然后可得答案.【题目详解】因为的对称轴为,且所以若函数在定义域上的值域为,则故选:A4、C【解题分析】由题知,再根据诱导公式与半角公式计算即可得答案.【题目详解】解:因为,是第二象限角,所以,所以.故选:C5、A【解题分析】令,则有或,在上的减区间为,故在上的减区间为,选A6、C【解题分析】根据题意,直接从所给随机数表中读取,即可得出结果.【题目详解】由题意,编号为的才是需要的个体;由随机数表依次可得:,故第四个个体编号为25.故选:C【题目点拨】本题考查了随机数表的读法,注意重复数据只取一次,属于基础题.7、D【解题分析】答案:D左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案8、C【解题分析】由可知与符号相同,且均为正,则,即,即可判断选项【题目详解】由题,因为,所以与符号相同,由于在中,与不可能均为负,所以,,又因为,所以,即,所以,所以三角形是锐角三角形故选:C【题目点拨】本题考查判断三角形的形状,考查三角函数值的符号9、A【解题分析】解一元二次不等式化简集合B,再利用交集的定义直接计算作答.【题目详解】解不等式,即,解得,则,而,所以.故选:A10、C【解题分析】故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据给定条件列出使函数f(log2x)有意义的不等式组,再求出其解集即可.【题目详解】因函数f(x)的定义域是[-1,1],则在f(log2x)中,必有,解不等式可得:,即,所以函数f(log2x)的定义域为.故答案为:12、1【解题分析】利用点到直线的距离公式可得所求的距离.【题目详解】圆心坐标为,它到直线的距离为,故答案为:1【题目点拨】本题考查圆的标准方程、点到直线的距离,此类问题,根据公式计算即可,本题属于基础题.13、2【解题分析】根据平行线间距离公式可直接求解.【题目详解】直线与平行由平行线间距离公式可得故答案为:2【题目点拨】本题考查了平行线间距离公式的简单应用,属于基础题.14、【解题分析】设,或为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是.15、【解题分析】求出函数的周期即可求解.【题目详解】根据题意,为偶函数,即函数图象关于直线对称,则有,又由为奇函数,则,则有,即,即函数是周期为4的周期函数,所以,故答案为:16、【解题分析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得.【题目详解】依题意,由得:或,即函数的定义域是,函数在上单调递减,在上单调递增,而在上单调递增,于是得在是单调递减,在上单调递增,所以函数的单调递增区间为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2)【解题分析】(1)根据向量数量积的坐标运算及辅助角公式,可得,然后由周期公式去求周期,再结合正弦函数的单调性去求函数的单调递增区间;(2)由(1)知,由求出,再结合正弦函数的单调性去求函数的值域【题目详解】(1)依题意得===的最小正周期是:由解得,从而可得函数的单调递增区间是:(2)由,可得,所以,从而可得函数的值域是:18、(Ⅰ)(Ⅱ)平行,(Ⅲ)详见解析【解题分析】(1)三棱锥的体积==·=.(2)当点为的中点时,与平面平行∵在中,分别为、的中点,∴,又平面,平面,∴平面(3)证明:∵⊥平面,平面,∴,又,,平面,平面.又平面,∴.又,点是的中点,∴,又,平面,∴⊥平面.∵平面,∴.考点:本小题主要考查三棱锥体积的计算、线面平行、线面垂直等的证明,考查学生的空间想象能力和逻辑推理能力.点评:计算三棱锥体积时,注意可以根据需要让任何一个面作底面,还经常利用等体积法求三棱锥19、(1)(2)存在;【解题分析】(1)因为的最小正周期为4,可求得,再根据满足,可知的图象关于点对称,结合,即可求出的值,进而求出结果;(2)由(1)可得,再根据,在同一坐标系中作出与的大致图象,根据图像并结合的单调性,建立方程,即可求出,由此即可求出结果.【小问1详解】解:因为的最小正周期为4,所以因为满足,所以的图象关于点对称,所以,所以,即,又,所以所以的解析式为【小问2详解】解:由,可得当时,,在同一坐标系中作出与的大致图象,如图所示,当时,,再结合的单调性可知点的横坐标即方程的根,解得结合图象可知存在实数满足,的取值范围是20、(1);(2)或.【解题分析】(1)设圆C的圆心为,半径为r,结合题意得,解出a、b、r的值,将其值代入圆的方程即可得答案(2)根据题意,分类讨论,斜率存在和斜率不存在两种情况:①当直线l的斜率不存在时,满足题意,②当直线l的斜率存在时,设所求直线l的斜率为k,则直线l的方程为:,由点到直线的距离公式求得k的值,即可得直线的方程,综合2种情况即可得答案【小问1详解】根据题意,设圆C的圆心为,半径为r,则圆C方程为,又圆C过,,且圆心C在直线上,∴,解得:,,,故圆C的方程为小问2详解】根据题意,设直线l与圆C交与MN两点,则,设D是线段MN的中点,则,∴,在中,可得当直线l的斜率不存在时,此时直线l的方程为,满足题意,当直线l的斜率存在时,设所求直线l的斜率为k,则直线l为:,即由C到直线MN距离公式:,解得:,此时直线l的方程为综上,所求直线l的方程为或21、(1),值域为(2)【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国冷萃咖啡壶行业市场全景分析及前景机遇研判报告
- 住院医师病例汇报大赛
- 内科咨询报告总结
- DBJT 13-119-2010 福建省住宅工程质量分户验收规程
- 半年护理工作总结
- 女士形象礼仪培训
- 污水泵基础知识培训
- 急性胰腺炎病人的护理
- 祭祖活动面试题及答案
- java基础面试题及答案软件测试
- 蓝天救援队队员入队申请表
- 施工升降机月检记录表
- T-CCIAT 0044-2022 智慧园区以太全光网络建设技术规程
- 广西基本医疗保险异地就医备案登记表-示例样表
- 中学生日常行为习惯养成课题计划2
- 供应商绿色环保环境管理体系评估表
- GB∕T 11344-2021 无损检测 超声测厚
- 《云南省建筑工程资料管理规程应用指南)(上下册)
- 数列求和中常见放缩方法和技巧(含答案)
- 宝兴县中药材生产现状及发展思路
- 小儿雾化吸入课件.ppt
评论
0/150
提交评论