版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省嘉兴市七校数学高一上期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角终边上一点,则A. B.C. D.2.在空间四边形的各边上的依次取点,若所在直线相交于点,则A.点必在直线上 B.点必在直线上C.点必在平面外 D.点必在平面内3.若偶函数在区间上是减函数,是锐角三角形的两个内角,且,则下列不等式中正确的是()A. B.C. D.4.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度5.下列说法正确的是A.棱柱被平面分成的两部分可以都是棱柱 B.底面是矩形的平行六面体是长方体C.棱柱的底面一定是平行四边形 D.棱锥的底面一定是三角形6.为了得到函数的图象,只需将的图象上的所有点A.横坐标伸长2倍,再向上平移1个单位长度B.横坐标缩短倍,再向上平移1个单位长度C.横坐标伸长2倍,再向下平移1个单位长度D.横坐标缩短倍,再向下平移1个单位长度7.2022年北京冬奥会将于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬奥会新增7个小项目,女子单人雪车为其中之一.下表是某国女子单人雪车集训队甲、乙两位队员十轮的比赛成绩,则下列说法正确的是()队员比赛成绩第一轮第二轮第三轮第四轮第五轮第六轮第七轮第八轮第九轮第十轮甲1分51秒741分51秒721分51秒751分51秒801分51秒901分51秒811分51秒721分51秒941分51秒741分51秒71乙1分51秒701分51秒801分51秒831分51秒831分51秒801分51秒841分51秒901分51秒721分51秒901分51秒91A.估计甲队员的比赛成绩的方差小于乙队员的比赛成绩的方差B.估计甲队员的比赛成绩的中位数小于乙队员的比赛成绩的平均数C.估计甲队员的比赛成绩的平均数大于乙队员的比赛成绩的平均数D.估计甲队员的比赛成绩的中位数大于乙队员的比赛成绩的中位数8.已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c9.若,,则的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.角的终边过点,则等于A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.下列四个命题中:①若奇函数在上单调递减,则它在上单调递增②若偶函数在上单调递减,则它在上单调递增;③若函数为奇函数,那么函数的图象关于点中心对称;④若函数为偶函数,那么函数的图象关于直线轴对称;正确的命题的序号是___________.12.下面四个命题:①定义域上单调递增;②若锐角,满足,则;③是定义在上的偶函数,且在上是增函数,若,则;④函数的一个对称中心是;其中真命题的序号为______.13.平面向量,,(R),且与的夹角等于与的夹角,则___.14.设函数,则________.15.设函数f(x)=,则f(-1)+f(1)=______16.函数f(x)=cos的图象向右平移个单位长度,得到函数的图象,则函数的解析式为_______,函数的值域是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示.(1)求的解析式及对称中心坐标:(2)先把的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若当时,关于的方程有实数根,求实数的取值范围.18.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值19.已知函数,为常数.(1)求函数的最小正周期及对称中心;(2)若时,的最小值为-2,求的值20.已知函数f(x)=ax2﹣(4a+1)x+4(a∈R).(1)若关于x不等式f(x)≥b的解集为{x|1≤x≤2},求实数a,b的值;(2)解关于x的不等式f(x)>0.21.计算下列各式的值(1);(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由题意利用任意角的三角函数的定义,求得的值【题目详解】∵角终边上一点,∴,,,则,故选C【题目点拨】本题主要考查任意角的三角函数的定义,属于基础题2、B【解题分析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上【题目详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选B【题目点拨】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明3、C【解题分析】根据,可得,根据的单调性,即可求得结果.【题目详解】因为是锐角三角形的两个内角,故可得,即,又因为,故可得;是偶函数,且在单调递减,故可得在单调递增,故.故选:C.【题目点拨】本题考查由函数奇偶性判断函数的单调性,涉及余弦函数的单调性,属综合中档题.4、D【解题分析】化简得到,根据平移公式得到答案.【题目详解】;故只需向右平移个单位长度故选:【题目点拨】本题考查了三角函数的平移,意在考查学生对于三角函数的变换的理解的掌握情况.5、A【解题分析】对于B.底面是矩形的平行六面体,它的侧面不一定是矩形,故它也不一定是长方体,故B错;对于C.棱柱的底面是平面多边形,不一定是平行四边形,故C错;对于D.棱锥的底面是平面多边形,不一定是三角形,故D错;故选A考点:1.命题的真假;2.空间几何体的特征6、B【解题分析】由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论【题目详解】将的图象上的所有点的横坐标缩短倍(纵坐标不变),可得y=3sin2x的图象;再向上平行移动个单位长度,可得函数的图象,故选B【题目点拨】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,熟记变换规律是关键,属于基础题7、B【解题分析】根据表格中甲乙成绩特征,可去掉成绩里面的分和秒后进行比较.根据中位数、平均数、方差的计算方法求出中位数、平均数、方差比较即可得到答案【题目详解】根据表格中甲乙成绩特征,可去掉成绩里面的分和秒后进行比较,作茎叶图如图:由图可知,甲的成绩主要集中在70-75之间,乙的成绩主要集中在80-90之间,∴甲的成绩的平均数小于乙的成绩的平均数,故C错误;由图可知甲的成绩中位数为74.5,乙成绩的中位数为83,故甲队员的比赛成绩的中位数小于乙队员的比赛成绩的中位数,故D错误;甲队员比赛成绩平均数为:,乙队员比赛成绩平均数为:,∴甲队员的比赛成绩的中位数小于乙队员的比赛成绩的平均数,故B正确;甲队员的比赛成绩的方差为:=57.41,乙队员的比赛成绩的方差为:=46.61,∴甲队员的比赛成绩的方差大于乙队员的比赛成绩的方差,故A错误故选:B8、B【解题分析】利用对数的运算性质求出a、b、c的范围,即可得到正确答案.【题目详解】因为a=log23+log2=log2=log23>1,b=log29-log2=log2=a,c=log32<log33=1,所以a=b>c.故选:B9、D【解题分析】根据同角三角函数关系式,化简,结合三角函数在各象限的符号,即可判断的终边所在的象限.【题目详解】根据同角三角函数关系式而所以故的终边在第四象限故选:D【题目点拨】本题考查了根据三角函数符号判断角所在的象限,属于基础题.10、B【解题分析】由三角函数的定义知,x=-1,y=2,r==,∴sinα==.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解题分析】根据奇函数、偶函数的性质可判断①②,结合平移变换可判断③④.【题目详解】奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性,故①错误,②正确;因为函数为奇函数,图象关于原点对称,的图象可以由的图象向右平移1个单位长度得到,故的图象关于点对称,故③正确;函数的图象可以由函数的图象向左平移1个单位长度得到,因为为偶函数,图象关于y轴对称,所以的图象关于直线轴对称,故④错误.故答案为:②③12、②③④【解题分析】由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案【题目详解】解:由正切函数的单调性可得①“在定义域上单调递增”为假命题;若锐角、满足,即,即,则,故②为真命题;若是定义在上的偶函数,且在上是增函数,则函数在上为减函数,若,则,则,故③为真命题;由函数则当时,故可得是函数的一个对称中心,故④为真命题;故答案为:②③④【题目点拨】本题考查的知识点是命题的真假判断与应用,函数单调性的性质,偶函数,正弦函数的对称性,是对函数性质的综合考查,熟练掌握基本初等函数的性质是解答本题的关键13、2【解题分析】,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角14、6【解题分析】根据分段函数的定义,分别求出和,计算即可求出结果.【题目详解】由题知,,,.故答案为:6.【题目点拨】本题考查了分段函数求函数值的问题,考查了对数的运算.属于基础题.15、3【解题分析】直接利用函数的解析式,求函数值即可【题目详解】函数f(x)=,则==3故答案为3【题目点拨】本题考查分段函数的应用,函数值的求法,考查计算能力16、①.②.【解题分析】由题意利用函数的图象变换规律求得的解析式,可得的解析式,再根据余弦函数的值域,二次函数的性质,求得的值域【题目详解】函数的图象向右平移个单位长度,得到函数的图象,函数,,故当时,取得最大值为;当时,取得最小值为,故的值域为,,故答案为:;,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】(1)由最大值和最小值求得,的值,由以及可得的值,再由最高点可求得的值,即可得的解析式,由正弦函数的对称中心可得对称中心;(2)由图象的平移变换求得的解析式,由正弦函数的性质可得的值域,令的取值为的值域,解不等式即可求解.【小问1详解】由题意可得:,可得,所以,因为,所以,可得,所以,由可得,因为,所以,,所以.令可得,所以对称中心为.【小问2详解】由题意可得:,当时,,,若关于的方程有实数根,则有实根,所以,可得:.所以实数的取值范围为.18、(1);(2);(3)见解析【解题分析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后通过在的图像上以及与、与的关系即可得到函数的解析式;(3)首先可通过三个函数的解析式得出函数的解析式,再通过函数的单调性得出函数的单调性,最后根据函数的单调性即可计算出函数的最值【题目详解】(1)当点的坐标为,点的坐标为,因为点也在图像上,所以,即;(2)设函数上,则有,即,而在的图像上,所以,代入得;(3)因为、、,所以,,令函数,因为当时,函数单调递减,所以当时,函数单调递增,,,综上所述,最小值为,最大值为【题目点拨】本题考查了对数函数的相关性质,考查了对数的运算、对数函数的单调性以及最值,考查函数方程思想以及化归与转化思想,体现了基础性与综合性,提高了学生的逻辑推理能力19、(1)最小正周期.对称中心为:,.(2)【解题分析】(1)根据周期和对称轴公式直接求解;(2)先根据定义域求的范围,再求函数的最小值,求参数的值.【题目详解】(1)∵,∴的最小正周期令,,解得,,∴的对称中心为:,.(2)当时,,故当时,函数取得最小值,即,∴取得最小值为,∴【题目点拨】本题考查的基本性质,意在考查基本公式和基本性质,属于基础题型.20、(1)-1,6;(2)答案见详解【解题分析】(1)由f(x)≥b的解集为{x|1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能化停车场车位租赁管理服务合同模板4篇
- 2025年度智能家居厨房系统安装工程合同规范版4篇
- 2024版牛奶饮料购销合同
- 2025年度专业代理记账服务合作协议书4篇
- 2025年度文化宣传活动传单派发合作协议范本4篇
- 2024年道路扩建工程爆破作业协议样本一
- 2025年度水利枢纽冲孔灌注桩施工劳务分包合同规范4篇
- 2025年度新型瓷砖产品研发运输合作协议4篇
- 2024石材开采与石材加工厂合作合同3篇
- 2025年度智能果园承包合作协议范本4篇
- 供应链管理培训
- 2023小学道德与法治教师招聘考试试题与答案
- 气管插管患者的压力性损伤防治
- 湖南高职单招《综合素质测试》考试题库(含答案)
- 失能老年人康复指导
- 数控加工技术-数控铣床的编程
- 内科疾病的门诊管理和科室建设
- 分子生物学在感染诊断中的应用
- 供应商年度评价内容及评分表
- 山东省济南市市中区2023-2024学年二年级上学期期中数学试卷
- 培训机构入驻合作协议
评论
0/150
提交评论