湖北省恩施州2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
湖北省恩施州2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
湖北省恩施州2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
湖北省恩施州2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
湖北省恩施州2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省恩施州2024届高一数学第一学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,可以将函数的图象A.向右平移 B.向右平移C.向左平移 D.向左平移2.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,3.已知向量,向量,则的最大值,最小值分别是()A.,0 B.4,C.16,0 D.4,04.设集合,则()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)5.已知直线过,两点,则直线的斜率为A. B.C. D.6.下列每组函数是同一函数的是()A. B.C. D.7.下列函数中既是奇函数,又在区间上是增函数的是()A. B.C. D.8.函数的部分图象是()A. B.C. D.9.对于函数的图象,关于直线对称;关于点对称;可看作是把的图象向左平移个单位而得到;可看作是把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍而得到以上叙述正确的个数是A.1个 B.2个C.3个 D.4个10.设函数,其中,,,都是非零常数,且满足,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在国际气象界,二十四节气被誉为“中国的第五大发明”.一个回归年定义为从某年春分到次年春分所经历的时间,也指太阳直射点回归运动的一个周期.某科技小组以某年春分为初始时间,统计了连续400天太阳直射点的纬度平均值(太阳直射北半球时取正值,直射南半球时取负值).设第x天时太阳直射点的纬度平均值为y,该小组通过对数据的整理和分析,得到y与x近似满足,则一个回归年对应的天数约为______(精确到0.01);已知某年的春分日是星期六,则4个回归年后的春分日应该是星期______.()12.如下图所示,三棱锥外接球的半径为1,且过球心,围绕棱旋转后恰好与重合.若,则三棱锥的体积为_____________.13.已知,且.(1)求的值;(2)求的值.14.已知函数,则=_________15.已知=-5,那么tanα=________.16.若关于x的不等式ax2+bx+c>0的解集为{x|1<x<2},则关于x的不等式cx2+bx+a>0的解集是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示.(1)求函数的解析式:(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度,得到函数的图象,求在上的值域18.总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到年中国的汽车总销量将达到万辆,并希望新能源汽车至少占总销量的五分之一.江苏某新能源公司某年初购入一批新能源汽车充电桩,每台元,到第年年末每台设备的累计维修保养费用为元,每台充电桩每年可给公司收益元.()(1)每台充电桩第几年年末开始获利;(2)每台充电桩在第几年年末时,年平均利润最大.19.已知函数(1)若,,求;(2)将函数的图象先向左平移个单位长度,再把所得图象上所有点的横坐标变为原来的,纵坐标不变,得到函数的图象.求函数的单调递增区间20.已知函数.(Ⅰ)求的单调区间;(Ⅱ)求函数的对称轴和对称中心.21.某市有A、B两家羽毛球球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内含20小时每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时设在A俱乐部租一块场地开展活动x小时的收费为元,在B俱乐部租一块场地开展活动x小时的收费为元,试求与的解析式;问该企业选择哪家俱乐部比较合算,为什么?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】先将,进而由平移变换规律可得解.【题目详解】函数,所以只需将向右平移可得.故选B.【题目点拨】本题主要考查了三角函数的图像平移变换,解题的关键是将函数名统一,需要利用诱导公式,属于中档题.2、B【解题分析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【题目详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【题目点拨】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.3、D【解题分析】利用向量的坐标运算得到|2用θ的三角函数表示化简求最值【题目详解】解:向量,向量,则2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分别是:16,0;所以|2的最大值,最小值分别是4,0;故选:D【题目点拨】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性4、C【解题分析】由题意分别计算出集合的补集和集合,然后计算出结果.【题目详解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故选:C5、C【解题分析】由斜率的计算公式计算即可【题目详解】因为直线过,两点,所以直线的斜率为.【题目点拨】本题考查已知两点坐标求直线斜率问题,属于基础题6、C【解题分析】依次判断每组函数的定义域和对应法则是否相同,可得选项.【题目详解】A.的定义域为,的定义城为,定义域不同,故A错误;B.的定义域为,的定义域为,定义域不同,故B错误;C.与的定义域都为,,对应法则相同,故C正确;D.的定义域为,的定义域为,定义域不同,故D错误;故选:C【题目点拨】易错点睛:本题考查判断两个函数是否是同一函数,判断时,注意考虑函数的定义域和对应法则是否完全相同,属于基础题.7、B【解题分析】利用函数的定义域、奇偶性、单调性等性质分别对各选项逐一判断即可得解.【题目详解】对于A,函数图象总在x轴上方,不是奇函数,A不满足;对于B,函数在R上递增,且,该函数是奇函数,B满足;对于C,函数是偶函数,C不满足;对于D,函数定义域是非零实数集,而,D不满足.故选:B8、C【解题分析】首先判断函数的奇偶性,即可排除AD,又,即可排除B.【题目详解】因为,定义域为R,关于原点对称,又,故函数为奇函数,图象关于原点对称,故排除AD;又,故排除B.故选:C.9、B【解题分析】由判断;由判断;由的图象向左平移个单位,得到的图象判断;由的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象判断.【题目详解】对于函数的图象,令,求得,不是最值,故不正确;令,求得,可得的图象关于点对称,故正确;把的图象向左平移个单位,得到的图象,故不正确;把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象,故正确,故选B【题目点拨】本题通过对多个命题真假的判断,综合考查三角函数的对称性以及三角函数的图象的变换规律,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.10、C【解题分析】代入后根据诱导公式即可求出答案【题目详解】解:由题,∴,∴,故选:C【题目点拨】本题主要考查三角函数的诱导公式的应用,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、①.365.25②.四【解题分析】(1)利用周期公式求出一个回归年对应的天数;(2)先计算出4个回归年经过的天数,再根据周期即可求解.【题目详解】因为周期,所以一个回归年对应的天数约为365.25;一个回归年对应的天数约为365.25,则4个回归年经过的天数为.因为,且该年春分日是星期六,所以4个回归年后的春分日应该是星期四.故答案为:365.25;四.12、【解题分析】作于,可证得平面,得,得等边三角形,利用是球的直径,得,然后计算出,再应用棱锥体积公式计算体积【题目详解】∵围绕棱旋转后恰好与重合,∴,作于,连接,则,,∴又过球心,∴,而,∴,同理,,,由,,,得平面,∴故答案为:【题目点拨】易错点睛:本题考查求棱锥的体积,解题关键是作于,利用旋转重合,得平面,这样只要计算出的面积,即可得体积,这样作图可以得出,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转,即为.旋转是旋转形成的二面角为.应用作出二面角的平面角13、(1)(2)【解题分析】(1)根据,之间的关系,平方后求值即可;(2)利用诱导公式化简后,再根据同角三角函数间关系求解.【小问1详解】∵∴,.【小问2详解】由,可得或(舍),原式,∴原式.14、【解题分析】按照解析式直接计算即可.【题目详解】.故答案为:-3.15、-【解题分析】由已知得=-5,化简即得解.【题目详解】易知cosα≠0,由=-5,得=-5,解得tanα=-.故答案为:-【题目点拨】本题主要考查同角的商数关系,意在考查学生对这些知识的理解掌握水平.16、【解题分析】由条件可得a<0,且1+2=,1×2=.b=a>0,c=2a>0,可得要解得不等式即x2+x>0,由此求得它的解集【题目详解】∵关于x的不等式ax2+bx+c>0的解集为{x|1<x<2},∴a<0,且1+2=,1×2=∴b=a>0,c=2a>0,∴=,=故关于x的不等式cx2+bx+a>0,即x2+x>0,即(x+1)(x)>0,故x<1或x>,故关于x的不等式cx2+bx+a>0的解集是,故答案为【题目点拨】本题主要考查一元二次不等式的解法,一元二次方程根与系数的关系,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)由函数图象顶点求出,再根据周期求出,根据点五点中的求出,即可得函数解析式;(2)先根据平移得出,由,得出,再根据三角函数图形及性质即可求出值域【题目详解】(1)由题设图象可知,∵周期,又,∴,∵过点,∴,即,∴,即∵,∴,故函数的解析式为;(2)由题意可知,∵,∴,∴,故,∴在上的值域为【题目点拨】本题主要考查由的部分图象求解析式,以及求三角函数的值域的应用,属于中档题.18、(1)第年;(2)第年.【解题分析】(1)构造二次函数模型,由二次函数解得结果;(2)由(1)知年平均利润,结合对勾函数单调性,验证可知,由此可得结果.【小问1详解】设每台充电桩在第年年末的利润为,则,令,解得:,又,,,每台充电桩从第年年末开始获利;【小问2详解】设为每台充电桩在第年年末的年平均利润,则;在上单调递减,在上单调递增,上单调递增,在上单调递减,又,,,,,每台充电桩在第年年末时,年平均利润最大.19、(1)(2)【解题分析】(1)由平方关系求出,再由求解即可;(2)由伸缩变换和平移变换得出的解析式,再由正弦函数的性质得出函数的单调递增区间【小问1详解】依题意,因为,所以,所以从而【小问2详解】将函数的图象先向左平移个单位长度,得到函数的图象再把所得图象上所有点的横坐标变为原来的,得到函数的图象令,的单调递增区间是所以,,解得,所以函数的单调递增区间为20、(1)单调递增区间为,单调递减区间为:;(2)对称中心为:,对称轴方程为:.【解题分析】详解】试题分析:(1)将看作一个整体,根据余弦函数的单调区间求解即可.(2)将看作一个整体,根据余弦函数的对称中心和对称轴建立方程可求得函数的对称轴和对称中心试题解析:(1)由,得,∴函数的单调递增区间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论