四川省成都外国语高级中学2024届高一数学第一学期期末质量检测模拟试题含解析_第1页
四川省成都外国语高级中学2024届高一数学第一学期期末质量检测模拟试题含解析_第2页
四川省成都外国语高级中学2024届高一数学第一学期期末质量检测模拟试题含解析_第3页
四川省成都外国语高级中学2024届高一数学第一学期期末质量检测模拟试题含解析_第4页
四川省成都外国语高级中学2024届高一数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都外国语高级中学2024届高一数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知一个直三棱柱的高为2,如图,其底面ABC水平放置的直观图(斜二测画法)为,其中,则此三棱柱的表面积为()A. B.C. D.2.已知函数,则()A. B.3C. D.3.设函数满足,的零点为,则下列选项中一定错误的是()A. B.C. D.4.已知,若,则A.1 B.2C.3 D.45.下列各式中,正确是()A. B.C. D.6.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.7.下列命题中是真命题的个数为()①函数的对称轴方程是;②函数的一个对称轴方程是;③函数的图象关于点对称;④函数的值域为A1 B.2C.3 D.48.“”是“”的()条件A.充分不必要 B.必要不充分C.充要 D.即不充分也不必要9.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为A. B.C. D.10.关于的方程的实数根的个数为()A.6 B.4C.3 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.命题的否定是__________12.已知向量,,,则=_____.13.设函数,则__________14.已知是定义在上的偶函数,且当时,,则当时,___________.15.已知,点在直线上,且,则点的坐标为________16.设偶函数的定义域为,函数在上为单调函数,则满足的所有的取值集合为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某镇发展绿色经济,因地制宜将该乡镇打造成“特色农产品小镇”,根据研究发现:生产某农产品,固定投入万元,最大产量万斤,每生产万斤,需其他投入万元,,根据市场调查,该农产品售价每万斤万元,且所有产量都能全部售出.(利润收入成本)(1)写出年利润(万元)与产量(万斤)的函数解析式;(2)求年产量为多少万斤时,该镇所获利润最大?求出利润最大值.18.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的图象如图所示(1)求函数f(x)的解析式及其对称轴方程(2)求函数f(x)在区间[﹣,﹣]上的最大值和最小值,并指出取得最值时的x的值19.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数,单位是,其中表示候鸟每分钟耗氧量的单位数,表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:,,)(1)若=3,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少?(2)若=6,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为,雌鸟的飞行速度为,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?20.已知函数图象的一个最高点和最低点的坐标分别为和(1)求的解析式;(2)若存在,满足,求m的取值范围21.已知函数是定义在上的偶函数,且.(1)求实数的值,并证明;(2)用定义法证明函数在上增函数;(3)解关于的不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据斜二测画法的“三变”“三不变”可得底面平面图,然后可解.【题目详解】由斜二测画法的“三变”“三不变”可得底面平面图如图所示,其中,所以,所以此三棱柱的表面积为.故选:C2、D【解题分析】根据分段函数的解析式,令代入先求出,进而可求出的结果.【题目详解】解:,则令,得,所以.故选:D.3、C【解题分析】根据函数的解析式,结合零点的存在定理,进行分类讨论判定,即可求解.【题目详解】由题意,函数的定义域为,且的零点为,即,解得,又因为,可得中,有1个负数、两个正数,或3个都负数,若中,有1个负数、两个正数,可得,即,根据零点的存在定理,可得或;若中,3个都是负数,则满足,即,此时函数的零点.故选:C.4、A【解题分析】构造函数,则为奇函数,根据可求得,进而可得到【题目详解】令,则为奇函数,且,由题意得,∴,∴,∴.故选A【题目点拨】本题考查运用奇函数的性质求函数值,解题的关键是根据题意构造函数,体现了转化思想在解题中的应用,同时也考查观察、构造的能力,属于基础题5、C【解题分析】利用指数函数的单调性可判断AB选项的正误,利用对数函数的单调性可判断CD选项的正误.【题目详解】对于A选项,因为函数在上为增函数,则,A错;对于B选项,因为函数在上为减函数,则,B错;对于C选项,因为函数为上的增函数,则,C对;对于D选项,因为函数为上的减函数,则,D错.故选:C.6、C【解题分析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【题目详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C7、B【解题分析】根据二次函数的性质、三角函数的性质以及图象,对每个选项进行逐一分析,即可判断和选择.【题目详解】对①:函数的对称轴方程是,故①是假命题;对②:函数的对称轴方程是:,当时,其一条对称轴是,故②正确;对函数,其函数图象如下所示:对③:数形结合可知,该函数的图象不关于对称,故③是假命题;对④:数形结合可知,该函数值域为,故④为真命题.综上所述,是真命题的有2个.故选:.8、B【解题分析】根据充分条件和必要条件的概念,结合题意,即可得到结果.【题目详解】因为,所以“”是“”的必要不充分条件.故选:B.9、D【解题分析】根据正四棱柱的几何特征得:该球的直径为正四棱柱的体对角线,故,即得,所以该球的体积,故选D.考点:正四棱柱的几何特征;球的体积.10、D【解题分析】转化为求或的实根个数之和,再构造函数可求解.【题目详解】因为,所以,所以,所以或,令,则或,因为为增函数,且的值域为,所以和都有且只有一个实根,且两个实根不相等,所以原方程的实根的个数为.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、;【解题分析】根据存在量词的命题的否定为全称量词命题即可得解;【题目详解】解:因为命题“”为存在量词命题,其否定为全称量词命题为故答案为:12、【解题分析】先根据向量的减法运算求得,再根据向量垂直的坐标表示,可得关于的方程,解方程即可求得的值.【题目详解】因为向量,,所以则即解得故答案为:【题目点拨】本题考查了向量垂直的坐标关系,属于基础题.13、【解题分析】先根据2的范围确定表达式,求出;后再根据的范围确定表达式,求出.【题目详解】因为,所以,所以.【题目点拨】分段函数求值问题,要先根据自变量的范围,确定表达式,然后代入求值.要注意由内而外求值,属于基础题.14、【解题分析】设,则,求出的表达式,再由即可求解.【题目详解】设,则,所以,因为是定义在上的偶函数,所以,所以当时,故答案为:.15、,【解题分析】设点,得出向量,代入坐标运算即得的坐标,得到关于的方程,从而可得结果.【题目详解】设点,因为点在直线,且,,或,,即或,解得或;即点的坐标是,.【题目点拨】本题考查了平面向量线性运算的坐标表示以及平面向量的共线问题,意在考查对基础知识的掌握与应用,是基础题.16、【解题分析】∵,又函数在上为单调函数∴=∴,或∴∴满足的所有的取值集合为故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当年产量为万斤时,该镇所获利润最大,最大利润为万元【解题分析】(1)根据利润收入成本可得函数解析式;(2)分别在和两种情况下,利用二次函数和对勾函数最值的求法可得结果.【小问1详解】由题意得:;【小问2详解】当时,,则当时,;当时,(当且仅当,即时取等号),;,当,即年产量为万斤时,该镇所获利润最大,最大利润为万元.18、(1);对称轴(2)当时,;当时,【解题分析】(1)由图知,,由,可求得,由可求得;(2)根据的范围求出的取值范围,再根据正弦函数的性质求解.【题目详解】解:由图可知,,又图象过点,解得,令,解得,故函数的对称轴为,(2)由正弦函数的性质可知,当即时当即时故当时,;当时,【题目点拨】本题考查:由的部分图象确定其解析式,考查函数的图象变换及三角函数性质的综合应用,属于中档题19、(1)(2)555(3)9【解题分析】(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出、,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得【小问1详解】解:因为候鸟的飞行速度可以表示为函数,所以将,代入函数式可得:故此时候鸟飞行速度为【小问2详解】解:因为候鸟的飞行速度可以表示为函数,将,代入函数式可得:即所以于是故候鸟停下休息时,它每分钟的耗氧量为555个单位【小问3详解】解:设雄鸟每分钟的耗氧量为,雌鸟每分钟的耗氧量为,依题意可得:,两式相减可得:,于是故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍20、(1),(2)【解题分析】(1)根据题意得到,所以,再代入数据计算得到,,得到答案.(2)因为,所以得到,得到计算得到答案.【题目详解】(1)由题意得,则.又,则,因,所以.,,因为的图象经过点,所以,所以,,因为,所以故(2)因为,所以从而,,因为,所以要使得存在满足,则,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论