云南省陆良县八中2024届高一数学第一学期期末统考试题含解析_第1页
云南省陆良县八中2024届高一数学第一学期期末统考试题含解析_第2页
云南省陆良县八中2024届高一数学第一学期期末统考试题含解析_第3页
云南省陆良县八中2024届高一数学第一学期期末统考试题含解析_第4页
云南省陆良县八中2024届高一数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省陆良县八中2024届高一数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.2.若函数的图像关于点中心对称,则的最小值为()A. B.C. D.3.函数在上的部分图象如图所示,则的值为A. B.C. D.4.若方程在区间内有两个不同的解,则A. B.C. D.5.已知函数则函数的零点个数为()A.0 B.1C.2 D.36.已知函数是定义在上的奇函数,当时,,则当时,表达式是A. B.C. D.7.某几何体的三视图如图所示,则它的体积是A.B.C.D.8.下列函数是奇函数,且在上单调递增的是()A. B.C. D.9.函数的最小值和最小正周期为()A.1和2π B.0和2πC.1和π D.0和π10.已知直线,直线,则与之间的距离为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数在上是增函数,则实数m的值是_________12.若扇形的周长是16,圆心角是2(rad),则扇形的面积是__________.13.如图,单位圆上有一点,点P以点P0为起点按逆时针方向以每秒弧度作圆周运动,5秒后点P的纵坐标y是_____________.14.集合的子集个数为______15.如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:①;②是偶函数;③在定义域上是增函数;④图象的两个端点关于圆心对称;⑤动点到两定点的距离和是定值.其中正确的是__________16.已知一个扇形的面积为,半径为,则其圆心角为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.现有三个条件:①对任意的都有;②不等式的解集为;③函数的图象过点.请你在上述三个条件中任选两个补充到下面的问题中,并求解(请将所选条件的序号填写在答题纸指定位置)已知二次函数,且满足________(填所选条件的序号).(1)求函数的解析式;(2)设,若函数在区间上的最小值为3,求实数m的值.18.求下列函数的解析式(1)已知是一次函数,且满足,求;(2)若函数,求19.化简求值:(1).(2)已知都为锐角,,求值.20.已知正方体,(1)证明:平面;(2)求异面直线与所成的角21.已知函数(1)若,求实数a值;(2)若函数f(x)有两个零点,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值.【题目详解】整理得,利用辅助角公式得,所以函数的最大值为,故选A.【题目点拨】三角函数求最值或者求值域一定要先将函数化成的形函数.2、C【解题分析】根据函数的图像关于点中心对称,由求出的表达式即可.【题目详解】因为函数的图像关于点中心对称,所以,所以,解得,所以故选:C【题目点拨】本题主要考查余弦函数的对称性,还考查了运算求解的能力,属于基础题.3、C【解题分析】由图象最值和周期可求得和,代入可求得,从而得到函数解析式,代入可求得结果.【题目详解】由图象可得:,代入可得:本题正确选项:【题目点拨】本题考查三角函数值的求解,关键是能够根据正弦函数的图象求解出函数的解析式.4、C【解题分析】由,得,所以函数的图象在区间内的对称轴为故当方程在区间内有两个不同的解时,则有选C5、C【解题分析】的零点个数等于的图象与的图象的交点个数,作出函数f(x)和的图像,根据图像即可得到答案.【题目详解】的零点个数等于的图象与的图象的交点个数,由图可知,的图象与的图象的交点个数为2.故选:C.6、D【解题分析】若,则,利用给出的解析式求出,再由奇函数的定义即,求出.【题目详解】设,则,当时,,,函数是定义在上的奇函数,,,故选D.【题目点拨】本题考查了函数奇偶性在求解析式的应用,属于中档题.本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为7、A【解题分析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.8、D【解题分析】利用幂函数的单调性和奇函数的定义即可求解.【题目详解】当时,幂函数为增函数;当时,幂函数为减函数,故在上单调递减,、和在上单调递增,从而A错误;由奇函数定义可知,和不是奇函数,为奇函数,从而BC错误,D正确.故选:D.9、D【解题分析】由正弦函数的性质即可求得的最小值和最小正周期【题目详解】解:∵,∴当=﹣1时,f(x)取得最小值,即f(x)min;又其最小正周期Tπ,∴f(x)的最小值和最小正周期分别是:,π故选D【题目点拨】本题考查正弦函数的周期性与最值,熟练掌握正弦函数的图象与性质是解题关键,属于中档题10、D【解题分析】利用两平行线间的距离公式即可求解.【题目详解】直线的方程可化为,则与之间的距离故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】因为幂函数在上是增函数,所以,解得,又因为,所以.故填1.12、16【解题分析】因为函数的周长为16,圆心角是2,设扇形的半径为,则,解得r=4,所以扇形的弧长为8,所以面积为,故答案为16.13、##【解题分析】根据单位圆上点的坐标求出,从而求出,从而求出点P的纵坐标.【题目详解】因为位于第一象限,且,故,所以,故,所以点P的纵坐标故答案为:14、32【解题分析】由n个元素组成的集合,集合的子集个数为个.【题目详解】解:由题意得,则A的子集个数为故答案为:32.15、③④⑤【解题分析】对于①,当即轴,线段的垂直平分线交线段于点,显然不在BD上,所以所以①不对;对于②,由于,不关于原点对称,所以不可能是偶函数,所以①不对;对于③,由图形知,点D向右移动,点F也向右移动,在定义域上是增函数,正确;对于④,由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(−7,−3),右端点(5,3),故f(n)图象的两个端点关于圆心A(-1,0)对称,正确;对于⑤,由垂直平分线性质可知,所以,正确.故答案为③④⑤.16、【解题分析】结合扇形的面积公式即可求出圆心角的大小.【题目详解】解:设圆心角为,半径为,则,由题意知,,解得,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)条件①,求出代入根据恒成立可得;条件②由一元二次不等式解的性质可得;条件③代入可得;分别根据选择①②,①③,②③,均可通过联立方程组可得结果;(2)求出函数的对称轴,将对称轴和区间的端点进行比较,根据函数的单调性列出关于的方程解出即可.【题目详解】(1)条件①:因为,所以,即对任意的x恒成立,所以,解得.条件②:因为不等式的解集为,所以,即.条件③:函数的图象过点,所以.选择条件①②:,,,此时;选择条件①③:,则,,,此时;选择条件②③:,则,,,此时.(2)由(1)知,其对称轴为,①当,即时,,解得;②当,即时,,解得(舍);③当,即时,,无解.综上所述,所求实数m的值为.【题目点拨】二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.18、(1),;(2),【解题分析】(1)利用待定系数法求解;(2)利用换元法求解.【题目详解】(1)因为是一次函数,设,则,所以,则,解得,所以;(2)由函数,令,则,所以,所以.19、(1);(2).【解题分析】(1)利用诱导公式以及两角和的正切公式结合正、余弦的齐次式计算化简原式;(2)先计算出的值,然后根据角的配凑以及两角差的余弦公式求解出的值.【题目详解】(1)解:原式;(2)解:因为都为锐角,,所以则.20、(1)证明见解析;(2)【解题分析】(1)证明,再根据线面平行的判定定理即可证明结论;(2)即为异面直线与所成的角,求出即可【题目详解】(1)证:在正方体中,,且,∴四边形为平行四边形,∴,又∵平面,平面;∴平面;(2)解:∵,∴即为异面直线与所成的角,设正方体的边长为,则易得,∴为等边三角形,∴,故异面直线与所成的角为【题目点拨】本题主要考查线面平行的判定与异面直线所成的角,属于基础题21、(1)(2)【解题分析】(1)根据即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论