广东省佛山市2024届数学高一上期末学业水平测试模拟试题含解析_第1页
广东省佛山市2024届数学高一上期末学业水平测试模拟试题含解析_第2页
广东省佛山市2024届数学高一上期末学业水平测试模拟试题含解析_第3页
广东省佛山市2024届数学高一上期末学业水平测试模拟试题含解析_第4页
广东省佛山市2024届数学高一上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市2024届数学高一上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=log3x-8+2x的零点一定位于区间A. B.C. D.2.三棱锥的外接球为球,球的直径是,且,都是边长为1的等边三角形,则三棱锥的体积是A. B.C. D.3.已知是以为圆心的圆上的动点,且,则A. B.C. D.4.已知函数为奇函数,且当时,,则()A. B.C. D.5.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.6.已知则()A. B.C. D.7.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A.-18 B.-12C.-8 D.-68.已知指数函数是减函数,若,,,则m,n,p的大小关系是()A. B.C. D.9.已知函数的值域为R,则a的取值范围是()A. B.C. D.10.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,全校参加登山的人数占总人数的.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进行调查,则应从高三年级参加跑步的学生中抽取人数为______.12.已知函数f(x)=(a>0,a≠1)是偶函数,则a=_________,则f(x)的最大值为________.13.若幂函数的图象过点,则______.14.函数的最大值为____________15.在空间直角坐标系中,点关于平面的对称点是B,点和点的中点是E,则___________.16.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在某单位的食堂中,食堂每天以元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂某天购进了80斤米粉,以(单位:斤)(其中)表示米粉的需求量,(单位:元)表示利润.(Ⅰ)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;(Ⅱ)将表示为的函数;(Ⅲ)根据直方图估计该天食堂利润不少于760元的概率.18.函数(其中)的图像如图所示.(Ⅰ)求函数的解析式;(Ⅱ)求函数在上的最大值和最小值.19.已知直线l经过点A(2,1),且与直线l1:2x﹣y+4=0垂直(1)求直线l的方程;(2)若点P(2,m)到直线l的距离为2,求m的值20.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点,研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4尾/立方米时,的值为2千克/年:当时,是的一次函数,当达到20尾/立方米时,因缺氧等原因,的值为0千克/年.(1)当时,求关于的函数解析式;(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.已知集合,,.(1)当时,求;(2)当时,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理2、B【解题分析】试题分析:取BC中点M,则有,所以三棱锥的体积是,选B.考点:三棱锥体积【思想点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解3、A【解题分析】根据向量投影的几何意义得到结果即可.【题目详解】由A,B是以O为圆心的圆上的动点,且,根据向量的点积运算得到=||•||•cos,由向量的投影以及圆中垂径定理得到:||•cos即OB在AB方向上的投影,等于AB的一半,故得到=||•||•cos.故选A【题目点拨】本题考查向量的数量积公式的应用,以及向量投影的应用.平面向量数量积公式的应用主要有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).4、C【解题分析】根据奇函数的定义得到,又由解析式得到,进而得到结果.【题目详解】因为函数为奇函数,故得到当时,,故选:C.5、B【解题分析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【题目点拨】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.6、D【解题分析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β)【题目详解】∵∴∴,∴,∴故选:D7、D【解题分析】首先根据题意得到,再根据的奇偶性求解即可.【题目详解】由题知:,所以当时,,又因为函数是奇函数,所以.故选:D8、B【解题分析】由已知可知,再利用指对幂函数的性质,比较m,n,p与0,1的大小,即可得解.【题目详解】由指数函数是减函数,可知,结合幂函数的性质可知,即结合指数函数的性质可知,即结合对数函数的性质可知,即,故选:B.【题目点拨】方法点睛:本题考查比较大小,比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法,解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.9、D【解题分析】首先求出时函数的值域,设时,的值域为,依题意可得,即可得到不等式组,解得即可;【题目详解】解:由题意可得当时,所以的值域为,设时,的值域为,则由的值域为R可得,∴,解得,即故选:D10、B【解题分析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【题目详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题意求得样本中抽取的高三的人数为人进而求得样本中高三年级参加登山的人,即可求解.【题目详解】由题意,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,所以样本中抽取的高三的人数为人,又因为全校参加登山的人数占总人数的,所以样本中高三年级参加登山的人数为,所以样本中高三年级参加跑步的人数为人.故答案为:.12、①.②.【解题分析】根据偶函数f(-x)=f(x)即可求a值;分离常数,根据单调性即可求最大值,或利用基本不等式求最值.【题目详解】是偶函数,,则,则,即,则,则,则,当且仅当,即,则时取等号,即的最大值为,故答案为:,13、【解题分析】设,将点代入函数的解析式,求出实数的值,即可求出的值.【题目详解】设,则,得,,因此,.故答案为.【题目点拨】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.14、【解题分析】利用二倍角公式将化为,利用三角函数诱导公式将化为,然后利用二次函数的性质求最值即可【题目详解】因为,所以当时,取到最大值.【题目点拨】本题考查了三角函数化简与求最值问题,属于中档题15、【解题分析】先利用对称性求得点B坐标,再利用中点坐标公式求得点E坐标,然后利用两点间距离公式求解.【题目详解】因为点关于平面的对称点是,点和点的中点是,所以,故答案为:16、1【解题分析】根据反函数的定义即可求解.【题目详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)平均数为75.5,众数为75,中位数为75.(2).(3)该天食堂利润不少于760元的概率为0.65.【解题分析】由频率分布直方图的数值计算可得平均数,众数,中位数由题意,当时,求出利润,当时,求出利润,由此能求出关于的函数解析式设利润不少于元为事件,利润不少于元时,即,再根据直方图利用概率计算公式求出对应的概率【题目详解】(Ⅰ)由频率分布直方图知,故中位数位于(70.,80)设为x,则(x-70)所以平均数为75.5,众数为75,中位数为75.(Ⅱ)一斤米粉的售价是元.当时,当时,故(Ⅲ)设利润不少于760元为事件,利润不少于760元时,即.解得,即.由直方图可知,当时,故该天食堂利润不少于760元的概率为0.65.【题目点拨】本题主要考查了样本估计总体和事件与概率,只要能读懂条形统计图,然后进行计算即可,较为基础18、(Ⅰ);(Ⅱ)最大值为1,最小值为0.【解题分析】(Ⅰ)由图象可得,从而得可得,再根据函数图象过点,可求得,故可得函数的解析式.(Ⅱ)根据的范围得到的范围,得到的范围后可得的范围,由此可得函数的最值试题解析:(Ⅰ)由图像可知,,∴,∴.∴又点在函数的图象上,∴,,∴,,又,∴∴的解析式是(Ⅱ)∵,∴∴,∴,∴当时,函数取得最大值为1;当时,函数取得最小值为0点睛:根据图象求解析式y=Asin(ωx+φ)的方法(1)根据函数图象的最高点或最低点可求得A;(2)ω由周期T确定,即先由图象得到函数的周期,再求出T(3)φ的求法通常有以下两种:①代入法:把图象上的一个已知点代入解析式(此时,A,ω,B已知)求解即可,此时要注意交点在上升区间还是下降区间②五点法:确定φ值时,往往以寻找“五点法”中的零点作为突破口,具体如下:“第一点”(即图象上升时与x轴的交点中距原点最近的交点)为ωx+φ=0;“第二点”(即图象的“峰点”)为ωx+φ=;“第三点”(即图象下降时与x轴的交点)为ωx+φ=;“第四点”(即图象的“谷点”)为ωx+φ=;“第五点”为ωx+φ=19、(1)x+2y﹣4=0;(2)m的值为6或﹣4【解题分析】(1)首先根据设出直线,再带入即可.(2)列出点到直线的距离公式即可求出的值.【题目详解】(1)根据题意,直线与直线垂直,设直线的方程为,又由直线经过点,则有,解可得.故直线的方程为.(2)根据题意,由(1)的结论:直线的方程为,若点到直线的距离为,则有,变形可得:,解可得:或.故的值为或.【题目点拨】本题第一问考查两条直线垂直的位置关系,第二问考查点到直线的距离公式,属于简单题.20、(1);(2)当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大为千克/立方米.【解题分析】(1)由题意:当时,.当时,设,在,是减函数,由已知得,能求出函数(2)依题意并由(1),,根据分段函数的性质求出各段的最大值,再取两者中较大的即可,由此能求出结果【题目详解】解:(1)由题意:当时,当时,设,显然在,减函数,由已知得,解得,,故函数(2)依题意并由(1)得,当时,为增函数,且当时,,所以,当时,的最大值为12.5当养殖密度为10尾立方米时,鱼年生长量可以达到最大,最大值约为12.5千克立方米【题目点拨】(1)很多实际问题中,变量间关系不能用一个关系式给出,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论