




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省毕节市赫章县数学高一上期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}2.已知函数,则A.0 B.1C. D.23.如图,在中,是的中点,若,则实数的值是A. B.1C. D.4.若函数的图象如图所示,则下列函数与其图象相符的是A. B.C. D.5.已知,则的值是A.0 B.–1C.1 D.26.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则7.若、是全集真子集,则下列四个命题①;②;③;④中与命题等价的有A.1个 B.2个C.3个 D.4个8.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.9.甲、乙两人在相同的条件下各打靶6次,每次打靶的情况如图所示(虚线为甲的折线图),则以下说法错误的是A.甲、乙两人打靶的平均环数相等B.甲的环数的中位数比乙的大C.甲的环数的众数比乙的大D.甲打靶的成绩比乙的更稳定10.函数y=xcosx+sinx在区间[–π,π]的图象大致为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数(e为自然对数的底数,a为常数),若为偶函数,则实数______;若对,恒成立,则实数a的取值范围是______12.已知是半径为,圆角为扇形,是扇形弧上的动点,是扇形的接矩形,则的最大值为________.13.已知tanα=3,则sinα(cosα-sinα)=______14.设偶函数的定义域为,函数在上为单调函数,则满足的所有的取值集合为______15.已知,则______________16.函数的部分图象如图所示.若,且,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线,.(1)若,求的值;(2)若,求的值.18.解下列关于的不等式;(1);(2).19.已知关于不等式.(1)若不等式的解集为,求实数的值;(2)若,成立,求实数的取值范围.20.函数的最小值为.(1)求;(2)若,求a及此时的最大值.21.已知集合,(1)当时,求以及;(2)若,求实数m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据补集的定义求出,再利用并集的定义求解即可.【题目详解】因为全集,,所以,又因为集合,所以,故选:B.2、B【解题分析】,选B.3、C【解题分析】以作为基底表示出,利用平面向量基本定理,即可求出【题目详解】∵分别是的中点,∴.又,∴.故选C.【题目点拨】本题主要考查平面向量基本定理以及向量的线性运算,意在考查学生的逻辑推理能力4、B【解题分析】由函数的图象可知,函数,则下图中对于选项A,是减函数,所以A错误;对于选项B,的图象是正确的;对C,是减函数,故C错;对D,函数是减函数,故D错误。故选B5、A【解题分析】利用函数解析式,直接求出的值.【题目详解】依题意.故选A.【题目点拨】本小题主要考查函数值的计算,考查函数的对应法则,属于基础题.6、D【解题分析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.7、B【解题分析】直接根据集合的交集、并集、补集的定义判断集合间的关系,从而求出结论【题目详解】解:由得Venn图,①;②;③;④;故和命题等价的有①③,故选:B【题目点拨】本题主要考查集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于基础题8、A【解题分析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理9、C【解题分析】甲:8,6,8,6,9,8,平均数为7.5,中位数为8,众数为8;乙:4,6,8,7,10,10,平均数为7.5,中位数7.5,众数为10;所以可知错误的是C.由折线图可看出乙的波动比甲大,所以甲更稳定.故选C10、A【解题分析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象.【题目详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD错误;且时,,据此可知选项B错误.故选:A.【题目点拨】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项二、填空题:本大题共6小题,每小题5分,共30分。11、①.1②.【解题分析】第一空根据偶函数的定义求参数,第二空为恒成立问题,参变分离后转化成求函数最值【题目详解】由,即,关于恒成立,故恒成立,等价于恒成立令,,,故a的取值范围是故答案为:1,12、【解题分析】设,用表示出的长度,进而用三角函数表示出,结合辅助角公式即可求得最大值.【题目详解】设扇形的半径为,是扇形的接矩形则,所以则所以因为,所以所以当时,取得最大值故答案为:【题目点拨】本题考查了三角函数的应用,将边长转化为三角函数式,结合辅助角公式求得最值是常用方法,属于中档题.13、【解题分析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【题目详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【题目点拨】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查14、【解题分析】∵,又函数在上为单调函数∴=∴,或∴∴满足的所有的取值集合为故答案为15、100【解题分析】分析得出得解.【题目详解】∴故答案为:100【题目点拨】由函数解析式得到是定值是解题关键.16、##【解题分析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【题目详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)利用两条直线垂直的条件,结合两条直线的方程可得1×(m﹣2)+m×3=0,由此求得m的值(2)利用两直线平行的条件,结合两条直线的方程可得,由此求得得m的值【题目详解】(1)∵直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,由l1⊥l2,可得1×(m﹣2)+m×3=0,解得(2)由题意可知m不等于0,由l1∥l2可得,解得m=﹣1【题目点拨】本题主要考查两直线平行、垂直的条件,属于基础题18、(1)(2)【解题分析】(1)根据一元二次不等式的解法即可得出答案;(1)根据一元二次不等式的解法即可得出答案.【小问1详解】解:不等式可化为,解得,所以不等式的解集为;【小问2详解】解:不等式可化为,解得或,所以不等式的解集为.19、(1);(2).【解题分析】(1)结合一元二次不等式的解集、一元二次方程的根的关系列方程,由此求得的值.(2)对分成可两种情况进行分类讨论,结合判别式求得的取值范围.【题目详解】(1)关于的不等式的解集为,∴和1是方程的两个实数根,代入得,解得;(2)当时,不等式为,满足题意;当时,应满足,解得;综上知,实数的取值范围是.20、(1)(2),的最大值5【解题分析】(1)通过配方得,再通过对范围的讨论,利用二次函数的单调性即可求得;(2)由于,对分与进行讨论,即可求得的值及的最大值【小问1详解】∵,∴,且,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纤支镜检查的护理
- 1岁以下婴儿培训课件
- 房地产项目合作开发合同书
- 语文课外阅读特色课程
- 乐器电商课程介绍
- 规范楷书系统课件
- 德法形策课程介绍
- 河北石油职业技术大学《生物医学工程整合课程》2023-2024学年第二学期期末试卷
- 人教版数学六年级下册第二单元《百分数(二)》同步练习含答案
- 遂宁能源职业学院《插画创作》2023-2024学年第二学期期末试卷
- 挖掘机维护保养记录
- 化学实验论文范文(6篇)
- 装修公司入职劳动合同
- (完整版)施工单位工程竣工报告
- 国家开放大学混凝土结构设计原理形考1-4参考答案
- 赣美版八年级美术下册《产品包装设计》教案及教学反思
- LOFT地下车库设计分析
- 对集成电路工程伦理问题的探讨
- 广告设计、制作、安装及售后服务方案
- SMM英国建筑工程标准计量规则中文 全套
- GB/T 9263-2020防滑涂料防滑性的测定
评论
0/150
提交评论