湖北省咸宁市重点中学2024届高一数学第一学期期末统考试题含解析_第1页
湖北省咸宁市重点中学2024届高一数学第一学期期末统考试题含解析_第2页
湖北省咸宁市重点中学2024届高一数学第一学期期末统考试题含解析_第3页
湖北省咸宁市重点中学2024届高一数学第一学期期末统考试题含解析_第4页
湖北省咸宁市重点中学2024届高一数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省咸宁市重点中学2024届高一数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,的最小值是()A. B.C. D.2.过圆C:(x﹣2)2+(y﹣2)2=4的圆心,作直线分别交x,y正半轴于点A,B,△AOB被圆分成四部分(如图),若这四部分图形面积满足SI+SⅣ=SⅡ+SⅢ,则这样的直线AB有A.0条 B.1条C.2条 D.3条3.某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的表面积为A. B.C. D.4.函数的部分图象如图,则()A. B.C. D.5.设,,,则a,b,c的大小关系是()A. B.C. D.6.函数是指数函数,则的值是A.4 B.1或3C.3 D.17.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种加密密钥密码系统,其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文.现在加密密钥为,如“4”通过加密后得到密文“2”,若接受方接到密文“”,则解密后得到的明文是()A. B.C.2 D.8.已知,并且是终边上一点,那么的值等于A. B.C. D.9.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是A.若,,则B.若,,,则C.若,,则D.若,,,则10.已知、、是的三个内角,若,则是A.钝角三角形 B.锐角三角形C.直角三角形 D.任意三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,且,则的最小值为______12.如图,点为锐角的终边与单位圆的交点,逆时针旋转得,逆时针旋转得逆时针旋转得,则__________,点的横坐标为_________13.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于-1,另一个大于1,那么实数m的取值范围是________14.已知是定义在R上的偶函数,且在区间上单调递增.若实数满足,则的取值范围是______.15.已知函数,的值域为,则实数的取值范围为__________.16.若正实数满足,则的最大值是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数在是增函数,求的取值范围;(2)若对于任意的,恒成立,求的取值范围.18.(1)当,求的值;(2)设,求的值.19.已知函数,,设(其中表示中的较小者).(1)在坐标系中画出函数的图像;(2)设函数的最大值为,试判断与1的大小关系,并说明理由.(参考数据:,,)20.已知函数的部分图象如图所示.(1)求的解析式及对称中心坐标:(2)先把的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若当时,关于的方程有实数根,求实数的取值范围.21.已知函数.(1)若为偶函数,求实数m的值;(2)当时,若不等式对任意恒成立,求实数a的取值范围;(3)当时,关于x的方程在区间上恰有两个不同的实数解,求实数m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】利用基本不等式可求得的最小值.【题目详解】,当且仅当时,即当时,等号成立,故函数的最小值为.故选:D.2、B【解题分析】数形结合分析出为定值,因此为定值,从而确定直线AB只有一条.【题目详解】已知圆与轴,轴均相切,由已知条件得,第部分的面积是定值,所以为定值,即为定值,当直线绕着圆心C移动时,只有一个位置符合题意,即直线AB只有一条.故选:B【题目点拨】本题考查直线与圆的实际应用,属于中档题.3、D【解题分析】由三视图知几何体为圆柱挖去一个圆锥所得的组合体,且圆锥与圆柱的底面直径都为4,高为2,则圆锥的母线长为,∴该几何体的表面积S=π×22+2π×2×2+π×2×2=(12+4)π,故选D.4、C【解题分析】先利用图象中的1和3,求得函数的周期,求得,最后根据时取最大值1,求得,即可得解【题目详解】解:根据函数的图象可得:函数的周期为,∴,当时取最大值1,即,又,所以,故选:C【题目点拨】本题主要考查了由的部分图象确定其解析式,考查了五点作图的应用和图象观察能力,属于基本知识的考查.属于基础题.5、C【解题分析】先判断,再判断得到答案.【题目详解】;;;,即故选:【题目点拨】本题考查了函数值的大小比较,意在考查学生对于函数性质的灵活运用.6、C【解题分析】由题意,解得.故选C考点:指数函数的概念7、A【解题分析】根据题意中给出的解密密钥为,利用其加密、解密原理,求出的值,解方程即可求解.【题目详解】由题可知加密密钥为,由已知可得,当时,,所以,解得,故,显然令,即,解得,即故选:A.8、A【解题分析】由题意得:,选A.9、C【解题分析】根据空间中直线与平面,平面与平面的位置关系即得。【题目详解】A.因为垂直于同一平面的两个平面可能平行或相交,不能确定两平面之间是平行关系,故不正确;B.若,,,则或相交,故不正确;C.由垂直同一条直线的两个平面的关系判断,正确;D.若,,,则或相交,故不正确.故选:C【题目点拨】本题考查空间直线和平面,平面和平面的位置关系,考查学生的空间想象能力。10、A【解题分析】依题意,可知B,C中有一角为钝角,从而可得答案详解】∵A是△ABC的一个内角,∴sinA>0,又sinAcosBtanC<0,∴cosBtanC<0,∴B,C中有一角为钝角,故△ABC为钝角三角形故选A【题目点拨】本题考查三角形的形状判断,求得B,C中有一角为钝角是判断的关键,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、6【解题分析】由可知,要使取最小值,只需最小即可,故结合,求出的最小值即可求解.【题目详解】由,,得(当且仅当时,等号成立),又因,得,即,由,,解得,即,故.因此当时,取最小值6.故答案为:6.12、①.##0.96②.【解题分析】由终边上的点得,,应用二倍角正弦公式求,根据题设描述知在的终边上,结合差角余弦公式求其余弦值即可得横坐标.【题目详解】由题设知:,,∴,所在角为,则,∴点的横坐标为.故答案为:,.13、(0,1)【解题分析】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可.【题目详解】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可,实数m满足不等式组解得0<m<1.故答案为(0,1)【题目点拨】这个题目考查了二次函数根的分布的问题,结合二次函数的图像的性质即可得到结果,题型较为基础.14、【解题分析】由题意在上单调递减,又是偶函数,则不等式可化为,则,,解得15、##【解题分析】由题意,可令,将原函数变为二次函数,通过配方,得到对称轴,再根据函数的定义域和值域确定实数需要满足的关系,列式即可求解.【题目详解】设,则,∵,∴必须取到,∴,又时,,,∴,∴.故答案为:16、4【解题分析】由基本不等式及正实数、满足,可得的最大值.【题目详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由函数可知对称轴为,由单调性可知,即可求解;(2)整理问题为在时恒成立,设,则可转化问题为在时恒成立,讨论对称轴与的位置关系,进而求解.【小问1详解】因为函数,所以对称轴为,因为在是增函数,所以,解得【小问2详解】因为对于任意的,恒成立,即在时恒成立,所以在时恒成立,设,则对称轴为,即在时恒成立,当,即时,,解得;当,即时,,解得(舍去),故.18、(1);(2)【解题分析】(1)利用商数关系,化弦为切,即可得到结果;(2)利用诱导公式化简,代入即可得到结果.【题目详解】(1)因为,且,所以,原式=(2)∵,【题目点拨】本题考查三角函数的恒等变换,涉及到正余弦的齐次式(弦化切),诱导公式,属于中档题.19、(1)见解析;(2)见解析.【解题分析】(1)根据(其中表示中的较小者),即可画出函数的图像;(2)由题意可知,为函数与图像交点的横坐标,即,设,根据零点存在定理及函数在上单调递增,且为连续曲线,可得有唯一零点,再由函数在上单调递减,即可得证.试题解析:(1)作出函数的图像如下:(2)由题意可知,为函数与图像交点的横坐标,且,∴.设,易知即为函数零点,∵,,∴,又∵函数在上单调递增,且为连续曲线,∴有唯一零点∵函数在上单调递减,∴,即.20、(1),(2)【解题分析】(1)由最大值和最小值求得,的值,由以及可得的值,再由最高点可求得的值,即可得的解析式,由正弦函数的对称中心可得对称中心;(2)由图象的平移变换求得的解析式,由正弦函数的性质可得的值域,令的取值为的值域,解不等式即可求解.【小问1详解】由题意可得:,可得,所以,因为,所以,可得,所以,由可得,因为,所以,,所以.令可得,所以对称中心为.【小问2详解】由题意可得:,当时,,,若关于的方程有实数根,则有实根,所以,可得:.所以实数的取值范围为.21、(1)-1;(2);(3)【解题分析】(1)根据偶函数解得:m=-1,再用定义法进行证明;(2)记,判断出在上单增,列不等式组求出实数a的取值范围;(3)先判断出在R上单增且,令,把问题转化为在上有两根,令,,利用图像有两个交点,列不等式求出实数m的取值范围.【小问1详解】定义域为R.因为为偶函数,所以,即,解得:m=-1.此时,所以所以偶函数,所以m=-1.【小问2详解】当时,不等式可化为:,即对任意恒成立.记,只需.因为在上单增,在上单增,所以在上单增,所以,所以,解得:,即实数a的取值范围为.【小问3详解】当时,在R上单增,在R上单增,所以在R上单增且.则可化为.又因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论