版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省阜新市新邱区阜新二中2024届高一数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数y=log2(x2-2kx+k)的值域为R,则k的取值范围是()A.0<k<1 B.0≤k<1C.k≤0或k≥1 D.k=0或k≥12.若函数与的图象关于直线对称,则的单调递增区间是()A. B.C. D.3.中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是℃,环境温度是℃,则经过分钟后物体的温度℃将满足,其中是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,℃的水应大约冷却()分钟冲泡该绿茶(参考数据:,)A.3 B.3.6C.4 D.4.84.已知点,,,且满足,若点在轴上,则等于A. B.C. D.5.已知H是球的直径AB上一点,AH:HB=1:2,AB⊥平面,H为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.6.定义在上的奇函数满足,若,,则()A. B.0C.1 D.27.图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h,日影长为l.图2是地球轴截面的示意图,虚线表示点A处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬)在某地利用一表高为的圭表按图1方式放置后,测得日影长为,则该地的纬度约为北纬()(参考数据:,)A. B.C. D.8.若a>b,则下列各式正确的是()A. B.C. D.9.若函数在闭区间上有最大值5,最小值1,则的取值范围是()A. B.C. D.10.在空间四边形的各边上的依次取点,若所在直线相交于点,则A.点必在直线上 B.点必在直线上C.点必在平面外 D.点必在平面内二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,,则集合中元素的个数为__________12.函数一段图象如图所示则的解析式为______13.若,则的值为___________.14.不等式的解集是___________.(用区间表示)15.若角的终边与角的终边相同,则在内与角的终边相同的角是______16.函数fx=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若在上的最大值为,求的值;(2)若为的零点,求证:.18.集合A={x|},B={x|};(1)用区间表示集合A;(2)若a>0,b为(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范围.19.已知,,,为坐标原点.(1)若,求的值;(2)若,且,求.20.某工厂利用辐射对食品进行灭菌消毒,先准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系式为p=k4x+5(0≤x≤15),若距离为10km时,测算宿舍建造费用为20万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需10万元,铺设路面每千米成本为4万元.设(1)求fx(2)宿舍应建在离工厂多远处,可使总费用最小,并求fx21.已知函数,且.(1)求函数的定义域,并判断函数的奇偶性.(2)求满足的实数x的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据对数函数值域为R的条件,可知真数可以取大于0的所有值,因而二次函数判别式大于0,即可求得k的取值范围【题目详解】因为函数y=log2(x2-2kx+k)的值域为R所以解不等式得k≤0或k≥1所以选C【题目点拨】本题考查了对数函数的性质,注意定义域为R与值域为R是不同的解题方法,属于中档题2、C【解题分析】根据题意得,,进而根据复合函数的单调性求解即可.【题目详解】解:因为函数与的图象关于直线对称,所以,,因为的解集为,即函数的定义域为由于函数在上单调递减,在上单调递减,上单调递增,所以上单调递增,在上单调递减.故选:C3、B【解题分析】根据题意求出k的值,再将θ=80℃,=100℃,=20℃代入即可求得t的值.【题目详解】由题可知:,冲泡绿茶时水温为80℃,故.故选:B.4、C【解题分析】由题意得,∴设点的坐标为,∵,∴,∴,解得故选:C5、D【解题分析】设球的半径为,根据题意知由与球心距离为的平面截球所得的截面圆的面积是,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积【题目详解】设球的半径为,∵,∴平面与球心的距离为,∵截球所得截面的面积为,∴时,,故由得,∴,∴球的表面积,故选D【题目点拨】本题主要考查的知识点是球的表面积公式,若球的截面圆半径为,球心距为,球半径为,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,属于中档题.6、C【解题分析】首先判断出是周期为的周期函数,由此求得所求表达式的值.【题目详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【题目点拨】本小题主要考查函数的奇偶性和周期性,属于基础题.7、B【解题分析】由题意有,可得,从而可得【题目详解】由图1可得,又,所以,所以,所以,该地的纬度约为北纬,故选:8、A【解题分析】由不等式的基本性质,逐一检验即可【题目详解】因为a>b,所以a-2>b-2,故选项A正确,2-a<2-b,故选项B错误,-2a<-2b,故选项C错误,a2,b2无法比较大小,故选项D错误,故选A【题目点拨】本题考查了不等式的基本性质,意在考查学生对该知识的理解掌握水平.9、D【解题分析】数形结合:根据所给函数作出其草图,借助图象即可求得答案【题目详解】,令,即,解得或,,作出函数图象如下图所示:因为函数在闭区间上有最大值5,最小值1,所以由图象可知,故选:D【题目点拨】本题考查二次函数在闭区间上的最值问题,考查数形结合思想,深刻理解“三个二次”间的关系是解决该类问题的关键10、B【解题分析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上【题目详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选B【题目点拨】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】依题意,故,即元素个数为个.12、【解题分析】由函数的最值求出A,由周期求出,由五点法作图求出的值,从而得到函数的解析式【题目详解】由函数的图象的顶点的纵坐标可得,再由函数的周期性可得,再由五点法作图可得,故函数的解析式为,故答案为【题目点拨】本题主要考查函数的部分图象求解析式,由函数的最值求出A,由周期求出,由五点法作图求出的值,属于中档题13、1或【解题分析】由诱导公式、二倍角公式变形计算【题目详解】,所以或,时,;时,故答案为:1或14、【解题分析】根据一元二次不等式解法求不等式解集.【题目详解】由题设,,即,所以不等式解集为.故答案为:15、【解题分析】根据角的终边与角的终边相同,得到,再得到,然后由列式,根据,可得整数的值,从而可得.【题目详解】∵(),∴()依题意,得(),解得(),∴,∴在内与角的终边相同的角为故答案为【题目点拨】本题考查了终边相同的角的表示,属于基础题.16、(0.+∞)【解题分析】函数定义域为R,∵3x>0∴3考点:函数单调性与值域三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)详见解析.【解题分析】(1)易知函数和在上递增,从而在上递增,根据在上的最大值为求解.(2)根据为的零点,得到,由零点存在定理知,然后利用指数和对数互化,将问题转化为,利用基本不等式证明.【题目详解】(1)因为函数和在上递增,所以在上递增,又因为在上的最大值为,所以,解得;(2)因为为的零点,所以,即,又当时,,当时,,所以,因为,等价于,等价于,等价于,而,令,所以,所以成立,所以.【题目点拨】关键点点睛:本题关键是由指数和对数的互化结合,将问题转化为证成18、(1);(2);(3),.【解题分析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,将b代入并因式分解,即可得解;(3)由题意知A⊆B,对a分类讨论即求得范围【题目详解】解:(1)由,有,解得x≤﹣2或x>3∴A=(-∞,-2]∪(3,+∞)(2)t>2,当且仅当t=5时取等号,故即为:且a>0∴,解得故B={x|}(3)b<0,A∩B=A,有A⊆B,而可得:a=0时,化为:2x﹣b<0,解得但不满足A⊆B,舍去a>0时,解得:或但不满足A⊆B,舍去a<0时,解得或∵A⊆B∴,解得∴a、b的取值范围是a∈,b∈(-4,0).【点评】本题考查了集合运算性质、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.19、(1)(2)【解题分析】(1)由向量平行的坐标运算列式直接求解即可;(2)先求得的坐标,利用坐标表示向量的模长,列方程求得,从而得,利用向量坐标表示数量积即可得解.【题目详解】(1)依题,,因,所以,所以(2)因为,所以,所以,因为,所以,所以,所以【题目点拨】本题主要考查了向量的坐标运算,包括共线、模长、数量积,属于基础题.20、(1)fx=9004x+5【解题分析】(1)根据距离为10km时,测算宿舍建造费用为20万元,可求k的值,由此,可得f(x)的表达式;(2)fx【题目详解】解:(1)由题意可知,距离为10km时,测算宿舍建造费用为20万元,则20=k4×10+5,解得k(2)因为fx=9004x+5答:宿舍应建在离工厂254km处,可使总费用最小,f【题目点拨】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农家乐包吃住合同范例
- 外包人员项目合同范例
- 产品居间协议合同范例
- 工厂水管整改合同范例
- 旅游员工合同范例
- 手机理财合同范例
- 书印刷装订合同范例
- 承租工序合同范例
- 建筑工程钢管采购合同范例
- 搬家清洁保洁合同范例
- 《综合实践一-用多媒体介绍湖北名人课件》小学信息技术华中科大课标版五年级下册课件2919
- 《养成良好的行为习惯》主题班会课件
- 焊接设备的新技术革新与应用规范
- 公民科学素质调查问卷
- 土壤采样方案
- 110kV升压站构支架组立施工方案
- 何以中国:公元前的中原图景
- 【中药贮藏与养护问题及解决对策4000字(论文)】
- 自然环境对聚落的影响
- 2023-2024学年天津市部分地区六年级数学第一学期期末综合测试试题含答案
- 河南省洛阳市偃师区2023-2024学年四年级数学第一学期期末经典模拟试题含答案
评论
0/150
提交评论