




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省荆州市荆州中学数学高一上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则为()A. B.2C.3 D.或32.全称量词命题“,”的否定为()A., B.,C., D.,3.若函数,则()A. B.C. D.4.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移个单位,得到的图像对应的解析式为()A. B.C. D.5.若,,,,则,,的大小关系是A. B.C. D.6.已知奇函数在上单调递减,且,则不等式的解集为()A. B.C. D.7.如图,边长为的正方形是一个水平放置的平面图形的直观图,则图形的面积是A. B.C. D.8.设、是两个非零向量,下列结论一定成立的是()A.若,则B.若,则存在实数,使得C若,则D.若存在实数,使得,则|9.将函数的图象向右平移个单位,得到函数的图象,若在上为增函数,则的最大值为A B.C. D.10.设,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.设a>0且a≠1,函数fx12.(2016·桂林高二检测)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.(1)A′C⊥BD.(2)∠BA′C=90°.(3)CA′与平面A′BD所成的角为30°.(4)四面体A′-BCD的体积为.13.已知幂函数的图象关于轴对称,且在上单调递减,则满足的的取值范围为________.14.已知,,,则,,的大小关系是______.(用“”连接)15.若m,n满足m2+5m-3=0,n2+5n-3=0,且m≠n,则的值为___________.16.已知幂函数的图象过点,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(1)若,求的值(2)求函数在R上的最小值;(3)若方程在上有四个不相等的实数根,求a的取值范围18.在中,角所对的边分别为,满足.(1)求角的大小;(2)若,且,求的面积19.已知函数(1)判断在区间上的单调性,并用定义证明;(2)求在区间上的值域20.在国家大力发展新能源汽车产业政策下,我国新能源汽车的产销量高速增长.某地区年底新能源汽车保有量为辆,年底新能源汽车保有量为辆,年底新能源汽车保有量为辆(1)根据以上数据,试从(,且),,(,且),三种函数模型中选择一个最恰当的模型来刻画新能源汽车保有量的增长趋势(不必说明理由),设从年底起经过年后新能源汽车保有量为辆,求出新能源汽车保有量关于的函数关系式;(2)假设每年新能源汽车保有量按(1)中求得的函数模型增长,且传统能源汽车保有量每年下降的百分比相同,年底该地区传统能源汽车保有量为辆,预计到年底传统能源汽车保有量将下降.试估计到哪一年底新能源汽车保有量将超过传统能源汽车保有量.(参考数据:,)21.已知长方体AC1中,棱AB=BC=3,棱BB1=4,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F.(1)求证A1C⊥平面EBD;(2)求二面角B1—BE—A1的正切值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据分段函数的定义域求解.【题目详解】因为,所以故选:C2、C【解题分析】由命题的否定的概念判断.否定结论,存在量词与全称量词互换.【题目详解】根据全称量词命题的否定是存在量词命题,可得命题“”的否定是“”故选:C.【题目点拨】本题考查命题的否定,属于基础题.3、C【解题分析】应用换元法求函数解析式即可.【题目详解】令,则,所以,即.故选:C4、B【解题分析】由三角函数的平移变换即可得出答案.【题目详解】函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得,再将所得的图象向左平移个单位可得故选:B.5、D【解题分析】分析:利用指数函数与对数函数及幂函数的行贿可得到,再构造函数,通过分析和的图象与性质,即可得到结论.详解:由题意在上单调递减,所以,在上单调递则,所以,在上单调递则,所以,令,则其为单调递增函数,显然在上一一对应,则,所以,在坐标系中结合和的图象与性质,量曲线分别相交于在和处,可见,在时,小于;在时,大于;在时,小于,所以,所以,即,综上可知,故选D.点睛:本题主要考查了指数式、对数式和幂式的比较大小问题,本题的难点在于的大小比较,通过构造指数函数与一次函数的图象与性质分析解决问题是解答的关键,着重考查了分析问题和解答问题的能力,试题有一定难度,属于中档试题.6、A【解题分析】由题意可得在单调递减,且,从而可得当或时,,当或时,,然后分和求出不等式的解集【题目详解】因为奇函数在上单调递减,且,所以在单调递减,且,所以当或时,,当或时,,当时,不等式等价于,所以或,解得,当时,不等式等价于,所以或,解得或,综上,不等式的解集为,故选:A7、D【解题分析】根据直观图画出原图可得答案.【题目详解】由直观图画出原图,如图,因为,所以,,则图形的面积是.故选:D8、B【解题分析】利用向量共线定理、垂直数量积为0来综合判断.【题目详解】A:当、方向相反且时,就可成立,A错误;B:若,则、方向相反,故存在实数,使得,B正确;C:若,则说明,不一定有,C错误;D:若存在实数,使得,则,D错误.故选:B9、B【解题分析】由题意可知,由在上为增函数,得,选B.10、C【解题分析】根据一元二次不等式的解法,结合充分性、必要性的定义进行判断即可.【题目详解】由,由不一定能推出,但是由一定能推出,所以“”是“”的必要不充分条件,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、1,0【解题分析】令指数为0即可求得函数图象所过的定点.【题目详解】由题意,令x-1=0⇒x=1,y=1-1=0,则函数的图象过定点(1,0).故答案为:(1,0).12、(2)(4)【解题分析】详解】若A′C⊥BD,又BD⊥CD,则BD⊥平面A′CD,则BD⊥A′D,显然不可能,故(1)错误.因为BA′⊥A′D,BA′⊥CD,故BA′⊥平面A′CD,所以BA′⊥A′C,所以∠BA′C=90°,故(2)正确.因为平面A′BD⊥平面BCD,BD⊥CD,所以CD⊥平面A′BD,CA′与平面A′BD所成的角为∠CA′D,因为A′D=CD,所以∠CA′D=,故(3)错误.四面体A′-BCD的体积为V=S△BDA′·h=××1=,因为AB=AD=1,DB=,所以A′C⊥BD,综上(2)(4)成立.点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.13、【解题分析】根据幂函数的单调性和奇偶性得到,代入不等式得到,根据函数的单调性解得答案.【题目详解】幂函数在上单调递减,故,解得.,故,,.当时,不关于轴对称,舍去;当时,关于轴对称,满足;当时,不关于轴对称,舍去;故,,函数在和上单调递减,故或或,解得或.故答案为:14、【解题分析】结合指数函数、对数函数的知识确定正确答案.【题目详解】,,所以故答案为:15、【解题分析】由题可知是方程的两个不同实根,根据韦达定理可求出.【题目详解】由题可知是方程的两个不同实根,则,.故答案为:.16、##【解题分析】设出幂函数解析式,代入已知点坐标求解【题目详解】设,由已知得,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解题分析】(1)利用求得,由此求得.(2)利用换元法,对进行分类讨论,结合二次函数的性质求得正确答案.(3)利用换元法,结合二次函数零点分布等知识来求得的取值范围.【小问1详解】因,所以即此时,由【小问2详解】令,,则,对称轴为①,即,②,即,③,即,综上可知,.【小问3详解】令,由题意可知,当时,有两个不等实数解,所以原题可转化为在内有两个不等实数根所以有18、(1)(2)【解题分析】(1)利用正弦定理可以得到,即可求出角的大小;(2)利用余弦定理并结合(1)中的结论,可以求出,代入三角形面积公式即可【题目详解】(1)由于,结合正弦定理可得,由于,可得,即,因为,故.(2)由,,且,代入余弦定理,即,解得,则的面积.【题目点拨】本题考查了正弦定理和余弦定理的应用,属于中档题19、(1)在区间上单调递增,证明见解析(2)【解题分析】(1)利用定义法,设出,通过做差比较的大小,即可证明;(2)根据第(1)问得到在区间上的单调性,在区间直接赋值即可求解值域.【小问1详解】在区间上单调递增,证明如下:,且,有因为,且,所以,于是,即故在区间上单调递增【小问2详解】由第(1)问结论可知,因为在区间上单调递增,,所以在区间上的值域为20、(1)应选择的函数模型是(,且),函数关系式为;(2)年底.【解题分析】(1)根据题中的数据可得出所选的函数模型,然后将对应点的坐标代入函数解析式,求出参数的值,即可得出函数解析式;(2)设传统能源汽车保有量每年下降的百分比为,根据题意求出的值,可得出设从年底起经过年后的传统能源汽车保有量关于的函数关系式,根据题意得出关于的不等式,解之即可.【小问1详解】解:根据该地区新能源汽车保有量的增长趋势知,应选择的函数模型是(,且),由题意得,解得,所以.【小问2详解】解:设传统能源汽车保有量每年下降的百分比为,依题意得,,解得,设从年底起经过年后的传统能源汽车保有量为辆,则有,设从年底起经过年后新能源汽车的数量将超过传统能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急性腹膜炎病人的护理
- 2025年锥虫焦虫病防治药合作协议书
- 尿路感染的治疗与护理
- 护理学新生儿黄疸
- 2025年电网系统电力电缆项目合作计划书
- 2025年中小学生安全教育日活动方案
- 陕西航空职业技术学院《生涯辅导》2023-2024学年第二学期期末试卷
- 陕西铁路工程职业技术学院《安全工程专业英语》2023-2024学年第二学期期末试卷
- 随州市广水市2025届五年级数学第二学期期末调研模拟试题含答案
- 2025年交联电力电缆项目合作计划书
- 2023年福建省中学生生物学初赛试题-(附答案解析)
- 南开大学商学院管理综合历年考研真题汇编(含部分答案)
- 胸椎结核护理查房课件
- 学校三公经费管理制度
- 新外研版高中英语选择性必修一Unit5 developing ideas课件
- 2024年中考语文备考之基础专项语言运用:拟写新闻标题(方法+真题解析)
- 星环大数据方案介绍课件
- 语言表达与运用 试卷(含答案解析)-1
- 牙齿发育异常 畸形根面沟
- 2023年全国职业院校技能大赛赛项承办校申报书
- 苏教版二年级数学下册第二三单元测试卷含答案
评论
0/150
提交评论