




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市顺义第九中学2024届高一上数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数图像大致为()A. B.C. D.2.已知函数,那么的值为()A.25 B.16C.9 D.33.下列函数是偶函数,且在上单调递减的是A. B.C. D.4.在正内有一点,满足等式,,则()A. B.C. D.5.已知函数,若方程有三个不同的实数根,则实数的取值范围是A. B.C. D.6.已知函数,则的值等于A. B.C. D.7.若,则的值为A. B.C.2 D.38.已知且,则()A.有最小值 B.有最大值C.有最小值 D.有最大值9.已知函数(其中)的图象如图所示,则函数的图像是()A. B.C. D.10.定义在R上的偶函数满足:对任意的,有,且,则不等式的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为____12.函数的最小值为__________13.的值为______14.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段BC,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为____________.(写成区间形式)15.若的最小正周期为,则的最小正周期为______16.已知集合A={0,1,2,3,4,5},集合B={1,3,5,7,9},则Venn图中阴影部分表示的集合中元素的个数为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的值域为,函数.(Ⅰ)求;(Ⅱ)当时,若函数有零点,求的取值范围,并讨论零点的个数.18.已知函数(1)求函数的最小正周期;(2)将函数的图象向左平移个单位长度得到函数的图象,若关于的方程在上有2个不等的实数解,求实数的取值范围19.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:该函数模型如下:根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝一瓶啤酒多少小时后才可以驾车?(时间以整小时计算)(参考数据:)20.求满足下列条件的圆的方程:(1)经过点,,圆心在轴上;(2)经过直线与的交点,圆心为点.21.“绿水青山就是金山银山”.某企业决定开发生产一款大型净水设备,生产这款设备的年固定成本为600万元,每生产台需要另投入成本万元.当年产量x不足100台时,;当年产量x不少于100台时,.若每台设备的售价为100万元时,经过市场分析,该企业生产的净水设备能全部售完(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)当年产量x为多少台时,该企业在这一款净水设备的生产中获利最大,最大利润是多少万元?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】先分析给定函数的奇偶性,排除两个选项,再在x>0时,探讨函数值正负即可判断得解.【题目详解】函数的定义域为,,即函数是定义域上的奇函数,其图象关于原点对称,排除选项A,B;x>0时,,而,则有,显然选项D不满足,C符合要求.故选:C2、C【解题分析】根据分段函数解析式求得.【题目详解】因为,所以.故选:C3、D【解题分析】函数为奇函数,在上单调递减;函数为偶函数,在上单调递增;函数为非奇非偶函数,在上单调递减;函数为偶函数,在上单调递减故选D4、A【解题分析】过作交于,作交于,则,可得,在中由正弦定理可得答案.【题目详解】过作交于,作交于,则,,在中,,,由正弦定理得.故选:A.5、A【解题分析】由得画出函数的图象如图所示,且当时,函数的图象以为渐近线结合图象可得当的图象与直线有三个不同的交点,故若方程有三个不同的实数根,实数的取值范围是.选A点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决,如在本题中,方程根的个数,即为直线与图象的公共点的个数;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.6、C【解题分析】因为,所以,故选C.7、A【解题分析】利用同角三角函数的基本关系,把要求值的式子化为,即可得到答案.【题目详解】由题意,因为,所以,故选A【题目点拨】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角恒等变换的公式,合理化简、运算是解答的关键,着重考查了运算与求解能力.8、A【解题分析】根据,变形为,再利用不等式的基本性质得到,进而得到,然后由,利用基本不等式求解.【题目详解】因为,所以,所以,所以,所以,所以,当且仅当时取等号,故选:A.【题目点拨】思路点睛:本题思路是利用分离常数法转化为,再由,利用不等式的性质构造,再利用基本不等式求解.9、A【解题分析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【题目详解】由图象可知:,因为,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A10、C【解题分析】依题意可得在上单调递减,根据偶函数的性质可得在上单调递增,再根据,即可得到的大致图像,结合图像分类讨论,即可求出不等式的解集;【题目详解】解:因为函数满足对任意的,有,即在上单调递减,又是定义在R上的偶函数,所以在上单调递增,又,所以,函数的大致图像可如下所示:所以当时,当或时,则不等式等价于或,解得或,即原不等式的解集为;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】本题首先可以通过分式的分母不能为以及根式的被开方数大于等于来列出不等式组,然后通过计算得出结果【题目详解】由题意可知,解得或者,故定义域为【题目点拨】本题考查函数的定义域的相关性质,主要考查函数定义域的判断,考查计算能力,考查方程思想,是简单题12、【解题分析】所以,当,即时,取得最小值.所以答案应填:.考点:1、对数的运算;2、二次函数的最值.13、【解题分析】直接利用对数的运算法则和指数幂的运算法则求解即可【题目详解】14、【解题分析】当,时,设,把点代入能求出解析式;当,时,设,把点、代入能求出解析式,结合题设条件,列出不等式组,即可求解.详解】当x∈(0,12]时,设,过点(12,78)代入得,a则f(x),当x∈(12,40]时,设y=kx+b,过点B(12,78)、C(40,50)得,即,由题意得,或得4<x≤12或12<x<28,所以4<x<28,则老师就在x∈(4,28)时段内安排核心内容,能使得学生学习效果最佳,故答案为:(4,28)【题目点拨】本题考查解析式的求法,考查不等式组的解法,解题时要认真审题,注意待定系数法的合理运用,属于中档题15、【解题分析】先由的最小正周期,求出的值,再由的最小正周期公式求的最小正周期.【题目详解】的最小正周期为,即,则所以的最小正周期为故答案为:16、3【解题分析】由集合定义,及交集补集定义即可求得.【题目详解】由Venn图及集合的运算可知,阴影部分表示的集合为∁又A={0,1,2,3,4,5},B={1,3,5,7,9},∴A∩B={1,3,5},∴即Venn图中阴影部分表示的集合中元素的个数为3故答案为:3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)答案见详解.【解题分析】(Ⅰ)对分段函数求值域,分别求出每一段函数的值域,再求其并集即可;(Ⅱ)函数有零点,即表示方程有根,与函数图像有交点,因而将换元,利用二次函数性质求出其值域,再数形结合讨论零点个数即可.【题目详解】(Ⅰ)如下图所示:当时,;当时,,所以函数的值域为;(Ⅱ)若函数有零点,即方程有根,即与函数图像有交点,令,,当时,,此时,即函数值域为,故而:当时,函数有零点,且当或时,函数有一个零点;当时,函数有两个零点.【题目点拨】(1)对分段函数求值域,先求出每一段函数的值域,再求其并集即可,也可利用函数图像去求;(2)函数零点问题一般可以转换为方程的根,或者两函数图像交点的问题,在答题时,需要根据实际情况进行转换,本题利用了转化及数形结合的思想,属于中档题.18、(1)(2)【解题分析】(1)利用三角恒等变换化简,由周期公式求解即可;(2)先求出的解析式,再把所求转化为方程在上有2个不等的实数解,令,根据图象即可求得结论【小问1详解】解:,即,所以函数的最小正周期为【小问2详解】解:由已知可得,方程在上有2个不等的实数解,即方程在上有2个不等的实数解令,因为,,,,,令,则,,作出函数图象如下图所示:要使方程在上有2个不等的实数解,则19、(1)喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升;(2)喝1瓶啤酒后需6小时后才可以驾车.【解题分析】(1)由图可知,当函数取得最大值时,,此时,当,即时,函数取得最大值为.故喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升.(2)由题意知,当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时.由,得:,两边取自然对数得:即,∴,故喝1瓶啤酒后需6小时后才可以驾车.20、(1)(2)【解题分析】(1)设出圆的方程,代入A、B两点坐标,求出圆心和半径,从而求出圆的方程;(2)先求出交点坐标,进而求出半径,写出圆的方程.【小问1详解】设圆的方程为,由题意得:,解得:,所以圆的方程为;【小问2详解】联立与,解得:,所以交点为,则圆的半径为,所以圆的方程为.21、(1)(2)年产量为10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 16 《大家排好队》(教学设计)2024-2025学年统编版(2024)小学道德与法治一年级上册
- 云南科技信息职业学院《文学作品与影视改编》2023-2024学年第二学期期末试卷
- 临沂职业学院《交通大数据分析与处理》2023-2024学年第二学期期末试卷
- 河南2025年河南省委党校省直分校招聘博士研究生2人笔试历年参考题库附带答案详解
- 辽宁装备制造职业技术学院《水质监测与实验》2023-2024学年第二学期期末试卷
- 洛阳师范学院《运动技能学习与控制》2023-2024学年第二学期期末试卷
- 2025年度文化活动场地租赁合同规范文本
- 监理机构职责
- 小数的意义二(教学设计)-2023-2024学年四年级下册数学北师大版
- 2025年度文化产业反担保保证合同及文化产业发展规划
- 《电力建设工程施工安全管理导则》(NB∕T 10096-2018)
- 2024-2025学年广东省部分学校高一(上)第一次联合考试物理试卷(含答案)
- 《黄色新闻的泛滥》课件
- 2024年山东省公务员考试《行测》真题及答案解析
- 化工原理Ⅱ学习通超星期末考试答案章节答案2024年
- 2024-2025学年初中体育与健康九年级全一册人教版(2024)教学设计合集
- 环保产业政策及市场发展趋势分析研究
- 2024年河南省高考对口升学语文英语试题
- 学习白求恩精神,做一个高尚的人一个纯洁的人
- 《中医药学概论》期末考试复习题库(含答案)
- 2024年秋季新外研版三年级上册英语课件 Unit 1 第1课时(Get ready)
评论
0/150
提交评论