广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校2024届高一数学第一学期期末复习检测模拟试题含解析_第1页
广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校2024届高一数学第一学期期末复习检测模拟试题含解析_第2页
广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校2024届高一数学第一学期期末复习检测模拟试题含解析_第3页
广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校2024届高一数学第一学期期末复习检测模拟试题含解析_第4页
广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校2024届高一数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校2024届高一数学第一学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若实数满足,则实数的取值范围是()A. B.C. D.2.采用系统抽样方法从人中抽取32人做问卷调查,为此将他们随机编号为,分组后在第一组采用简单随机抽样方法抽到的号码为.抽到的人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为A. B.C. D.3.若是第二象限角,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限4.若角,均为锐角,,,则()A. B.C. D.5.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间(分)的函数关系表示的图象只可能是()A. B.C. D.6.棱长分别为1、、2的长方体的8个顶点都在球的表面上,则球的体积为A. B.C. D.7.已知集合,集合,则集合A. B.C. D.8.已知关于x的不等式解集为,则下列说法错误的是()A.B.不等式的解集为C.D.不等式的解集为9.在中,如果,则角A. B.C. D.10.已知是定义在上的偶函数,那么的最大值是()A.0 B.C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,是定义在区间上的奇函数,则_________.12.数据的第50百分位数是__________.13.函数的值域是__________.14.设函数则的值为________15.已知函数的图象恒过定点,若点也在函数的图象上,则_________16.在正方形ABCD中,E是线段CD的中点,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数定义域为,且存在非零实数,使得对于任意恒成立,称函数满足性质(1)分别判断下列函数是否满足性质并说明理由①②(2)若函数既满足性质,又满足性质,求函数的解析式(3)若函数满足性质,求证:存在,使得18.已知函数,其中.(1)若函数的周期为,求函数在上的值域;(2)若在区间上为增函数,求的最大值,并探究此时函数的零点个数.19.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.20.直线过定点,交、正半轴于、两点,其中为坐标原点.(Ⅰ)当的倾斜角为时,斜边的中点为,求;(Ⅱ)记直线在、轴上的截距分别为,其中,求的最小值.21.某视频设备生产厂商计划引进一款新型器材用于产品生产,以提高整体效益.通过市场分析,每月需投入固定成本5000元,每月生产台该设备另需投入成本元,且,若每台设备售价1000元,且当月生产的视频设备该月内能全部售完.(1)求厂商由该设备所获的月利润关于月产量台的函数关系式;(利润=销售额-成本)(2)当月产量为多少台时,制造商由该设备所获得的月利润最大?并求出最大月利润.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由题可得函数关于对称,且在上单调递增,在上单调递减,进而可得,即得.【题目详解】∵函数,定义域为,又,所以函数关于对称,当时,单调递增,故函数单调递增,∴函数在上单调递增,在上单调递减,由可得,,解得,且.故选:D.2、C【解题分析】从960人中用系统抽样方法抽取32人,则抽样距为k=,因为第一组号码为9,则第二组号码为9+1×30=39,…,第n组号码为9+(n-1)×30=30n-21,由451≤30n-21≤750,得,所以n=16,17,…,25,共有25-16+1=10(人)考点:系统抽样.3、D【解题分析】先分析得到,即得点所在的象限.【题目详解】因为是第二象限角,所以,所以点在第四象限,故选D【题目点拨】本题主要考查三角函数的象限符合,意在考查学生对该知识的理解掌握水平,属于基础题.4、B【解题分析】根据给定条件,利用同角公式及差角的正弦公式计算作答.【题目详解】角,均为锐角,即,而,则,又,则,所以,.故选:B5、A【解题分析】利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下相同的体积,当时间取分钟时,液面下降的高度与漏斗高度的比较.【题目详解】由于所给的圆锥形漏斗上口大于下口,当时间取分钟时,液面下降的高度不会达到漏斗高度的,对比四个选项的图象可得结果.故选:A【题目点拨】本题主要考查了函数图象的判断,常利用特殊值和函数的性质判断,属于中档题.6、A【解题分析】球的直径为长方体的体对角线,又体对角线的长度为,故体积为,选A.7、C【解题分析】故选C8、D【解题分析】根据已知条件得和是方程的两个实根,且,根据韦达定理可得,根据且,对四个选项逐个求解或判断可得解.【题目详解】由已知可得-2,3是方程的两根,则由根与系数的关系可得且,解得,所以A正确;对于B,化简为,解得,B正确;对于C,,C正确;对于D,化简为:,解得,D错误故选:D.9、C【解题分析】由特殊角的三角函数值结合在△ABC中,可求得A的值;【题目详解】,又∵A∈(0,π),∴故选C.【题目点拨】本题考查了特殊角的三角函数值及三角形中角的范围,属于基础题.10、C【解题分析】∵f(x)=ax2+bx是定义在[a-1,2a]上偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、27【解题分析】由于奇函数的定义域必然关于原点对称,可得m的值,再求【题目详解】由于奇函数的定义域必然关于原点对称∴m=3,故f(m)=故答案为27【题目点拨】本题主要考查函数的奇偶性,利用了奇函数的定义域必然关于原点对称,属于基础题12、16【解题分析】第50百分位数为数据的中位数,即得.【题目详解】数据的第50百分位数,即为数据的中位数为.故答案为:16.13、【解题分析】首先换元,再利用三角变换,将函数转化为关于二次函数,再求值域.【题目详解】设,因为,所以,则,,当时,函数取得最小值,当时,函数取得最大值,所以函数的值域是故答案为:14、【解题分析】直接利用分段函数解析式,先求出的值,从而可得的值.【题目详解】因为函数,所以,则,故答案为.【题目点拨】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.15、【解题分析】根据对数过定点可求得,代入构造方程可求得结果.【题目详解】,,,解得:.故答案为:.16、【解题分析】详解】由图可知,,所以))所以,故,即,即得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)①②满足性质,理由见解析(2)(3)证明见解析【解题分析】(1)计算,,得到答案.(2)根据函数性质变换得到,,,解得答案.(3)根据函数性质得到,取,当时满足条件,得到答案.【小问1详解】,故满足;,故满足.【小问2详解】且,故,,,解得.【小问3详解】,故,取得到,即,取,当时,,故存在满足.18、(1)(2)最大值为,6个【解题分析】(1)根据正弦的二倍角公式和辅助角公式可得,利用求出,进而求出,结合三角函数的性质即可得出结果;(2)利用三角函数的性质求出的单调增区间,根据题意和集合之间的关系求出;将问题转化为函数与的图象交点的个数,作出图形,利用数形结合的思想即可得出答案.【小问1详解】由,由周期为且,得,解得,即,由,得,故,所以函数在上的值域为.【小问2详解】因为在区间上单调递增,故在区间上为单调递增由题知,存在使得成立,则必有则,解得,故,所以的最大值为.当时,函数的零点个数转化为函数与的图象的公共点的个数.画图得:由图知与的图象的公共点的个数共6个,即的零点个数为6个.19、(1)(2)【解题分析】(1)根据函数过点代入解析式,即可求得的值;(2)由(1)可得函数的解析式,结合函数的单调性求出x的取值范围.【题目详解】解:(1)∵函数的图象经过点,即,可得;(2)由(1)得,即,,【题目点拨】本题考查待定系数法求函数解析式,以及由指数函数的单调性解不等式,属于基础题.20、(Ⅰ);(Ⅱ)9.【解题分析】(Ⅰ)首先求得直线方程与坐标轴的交点,然后求解的值即可;(Ⅱ)由题意结合截距式方程和均值不等式的结论求解的最小值即可.【题目详解】(Ⅰ),令令,.(Ⅱ)设,则,,当时,的最小值.【题目点拨】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论