




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市三校联考2024届高一上数学期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为等差数列,为的前项和,且,,则公差A. B.C. D.2.直三棱柱中,若,则异面直线与所成角的余弦值为A.0 B.C. D.3.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号12345678频数1013141513129第3组的频数和频率分别是()A.和14 B.14和C.和24 D.24和4.若偶函数f(x)在区间(﹣∞,0]上单调递减,且f(3)=0,则不等式(x﹣1)f(x)>0的解集是A. B.C D.,5.已知幂函数的图象过点,则的值为()A. B.C. D.6.直线(为实常数)的倾斜角的大小是A B.C. D.7.的值为A. B.C. D.8.函数的图象形如汉字“囧”,故称其为“囧函数”下列命题:①“囧函数”的值域为R;②“囧函数”在上单调递增;③“囧函数”的图象关于轴对称;④“囧函数”有两个零点;⑤“囧函数”的图象与直线至少有一个交点.正确命题的个数为A1 B.2C.3 D.49.给定已知函数.若动直线y=m与函数的图象有3个交点,则实数m的取值范围为A. B.C. D.10.sin210°·cos120°的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.对数函数(且)的图象经过点,则此函数的解析式________12.幂函数,当取不同的正数时,在区间上它们的图像是一族美丽的曲线(如图).设点,连接,线段恰好被其中的两个幂函数的图像三等分,即有.那么_______13.定义在上的函数满足,且时,,则________14.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮船航行模式之先导,如图,某桨轮船的轮子的半径为,他以的角速度逆时针旋转,轮子外边沿有一点P,点P到船底的距离是H(单位:m),轮子旋转时间为t(单位:s).当时,点P在轮子的最高处.(1)当点P第一次入水时,__________;(2)当时,___________.15.设,且,则的取值范围是________.16.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的对称轴方程;(2)若在上,函数最小值为且有两个不相等的实数根,求实数m的取值范围18.如图,在三棱锥中,底面,,,分别是,的中点.(1)求证:平面;(2)求证:.19.已知函数,为常数.(1)求函数的最小正周期及对称中心;(2)若时,的最小值为-2,求的值20.记函数的定义域为集合,函数的定义域为集合(Ⅰ)求集合;(Ⅱ)若,求实数的取值范围21.已知p:A={x|x2-2x-3≤0,x∈R},q:B={x|x2-2mx+m2-9≤0,x∈R,m∈R}(1)若A∩B={x|1≤x≤3,x∈R},求实数m值;(2)若﹁q是p的必要条件,求实数m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】分析:先根据已知化简即得公差d.详解:由题得4+4+d+4+2d=6,所以d=.故答案为A.点睛:本题主要考查等差数列的前n项和和等差数列的通项,意在考查学生对这些基础知识的掌握水平.2、A【解题分析】连接,在正方形中,,又直三棱柱中,,即,所以面.所以,所以面,面,所以,即异面直线与所成角为90°,所以余弦值为0.故选A.3、B【解题分析】根据样本容量和其它各组的频数,即可求得答案.【题目详解】由题意可得:第3组频数为,故第3组的频率为,故选:B4、B【解题分析】由偶函数在区间上单调递减,且,所以在区间上单调递增,且,即函数对应的图象如图所示,则不等式等价为或,解得或,故选B考点:不等关系式的求解【方法点晴】本题主要考查了与函数有关的不等式的求解,其中解答中涉及到函数的奇偶性、函数的单调性,以及函数的图象与性质、不等式的求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能,以及推理与运算能力,试题比较基础,属于基础题,本题的解得中利用函数的奇偶性和单调性,正确作出函数的图象是解答的关键5、A【解题分析】待定系数求得幂函数解析式,再求对数运算的结果即可.【题目详解】设幂函数为,由题意得,,∴故选:A【题目点拨】本题考查幂函数解析式的求解,涉及对数运算,属综合简单题.6、D【解题分析】计算出直线的斜率,再结合倾斜角的取值范围可求得该直线的倾斜角.【题目详解】设直线倾斜角为,直线的斜率为,所以,,则.故选:D.【题目点拨】本题考查直线倾斜角的计算,一般要求出直线的斜率,考查计算能力,属于基础题.7、C【解题分析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故选C.8、B【解题分析】根据“囧函数”的定义结合反比例函数的性质即可判断①,根据复合函数的单调性即可②,根据奇偶性的定义即可判断③,根据零点的定义及反比例函数的性质即可判断④,数形结合即可判断⑤.【题目详解】解:由题设可知函数的函数值不会取到0,故命题①是错误的;当时,函数是单调递增函数,故“囧函数”在上单调递减,因此命题②是错误的;函数的定义域为,因为,所以函数是偶函数,因此其图象关于轴对称,命题③是真命题;因当时函数恒不为零,即没有零点,故命题④是错误的;作出的大致图象,如图,在四个象限都有图象,故直线与函数的图象至少有一个交点,因此命题⑤也是真命题综上命题③⑤是正确的,其它都是错误的.故选:B9、B【解题分析】画出函数的图像以及直线y=k的图像,根据条件和图像求得k的范围。【题目详解】设,由题可知,当,即或时,;当,即时,,因为,故当时,,当时,,做出函数的图像如图所示,直线y=m与函数有3个交点,可得k的范围为(4,5).故选:B【题目点拨】本题考查函数图像与直线有交点问题,先分别求出各段函数的解析式,再利用数形结合的方法得到参数的取值范围。10、A【解题分析】直接诱导公式与特殊角的三角函数求解即可.【题目详解】,故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】将点的坐标代入函数解析式,求出的值,由此可得出所求函数的解析式.【题目详解】由已知条件可得,可得,因为且,所以,.因此,所求函数解析式为.故答案为:.12、1【解题分析】求出的坐标,不妨设,,分别过,,分别代入点的坐标,变形可解得结果.【题目详解】因为,,,所以,,不妨设,,分别过,,则,,则,所以故答案为:113、【解题分析】根据题意可得,再根据对数运算法则结合时的解析式,即可得答案;【题目详解】由可得函数为奇函数,由可得,故函数的周期为4,所以,因为,所以..故答案为:.【题目点拨】本题考查函数奇偶性及对数的运算法则,考查逻辑推理能力、运算求解能力.14、①.②.##【解题分析】算出点从最高点到第一次入水的圆心角,即可求出对应时间;由题意求出关于的表达式,代值运算即可求出对应.【题目详解】如图所示,当第一次入水时到达点,由几何关系知,又圆的半径为3,故,此时轮子旋转的圆心角为:,故;由题可知,即,当时,.故答案为:;15、【解题分析】由题意得,,又因为,则的取值范围是16、①.6②.10240【解题分析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【题目详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【题目点拨】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】(1)应用二倍角正余弦公式、辅助角公式可得,根据余弦函数的性质求的对称轴方程.(2)由题设可得,画出的图象,进而由已知条件及数形结合思想求m的取值范围【小问1详解】由题设,,令,,可得,.∴的对称轴方程为,.【小问2详解】令,在上,而时有,且图象如下:又最小值为且有两个不相等的实数根,由上图知:,可得.18、(1)证明过程见解析;(2)证明过程见解析.【解题分析】(1)利用三角形中位线定理,结合线面平行的判定定理进行证明即可;(2)利用线面垂直的性质,结合线面垂直的判定定理进行证明即可.【题目详解】(1)因为,分别是,的中点,所以,又因为平面,平面,所以平面;(2)因为底面,底面,所以,又因为,,平面,所以平面,而平面,所以.19、(1)最小正周期.对称中心为:,.(2)【解题分析】(1)根据周期和对称轴公式直接求解;(2)先根据定义域求的范围,再求函数的最小值,求参数的值.【题目详解】(1)∵,∴的最小正周期令,,解得,,∴的对称中心为:,.(2)当时,,故当时,函数取得最小值,即,∴取得最小值为,∴【题目点拨】本题考查的基本性质,意在考查基本公式和基本性质,属于基础题型.20、(Ⅰ);(Ⅱ)【解题分析】(1)根据根式有意义的条件,并结合指数函数的性质解不等式得到集合A;(2)先求解集合,由得到A是B的子集,根据集合包含关系列出关于a的不等式,求得a的取值范围【题目详解】(Ⅰ)由已知得:(Ⅱ)由∵,∴或∵,∴,∴21、(1)m=4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届上海市金山区高三下学期4月二模政治试题(原卷版+解析版)
- 员工培训财务制度
- 汽车产品上市培训
- 广告服务代理服务合同模板二零二五年
- 二零二五幼儿园用工合同模板
- 基辛格对中国的告诫
- 离婚冷静期离婚协议模板二零二五年
- 全新公司股权期权协议书二零二五年
- 全新办理协议离婚程序
- 李大小学创建民族团结示范校工作方案
- 河北省廊坊市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- (最新)信贷资产风险分类管理办法
- 五年级下册书法教学课件第9课-上下结构(二)-西泠印社版(共18张)课件
- 不甘屈辱奋勇抗争第三课时甲午风云课件五年级道德与法治
- 家具厂安全生产台帐
- ESC700培训(PPT35页)(PPT 36页)
- JIS G3141-2021 冷轧钢板及钢带标准
- 市政工程类建筑施工项目危险源辨识及风险管控清单
- 精神科应急预案PPT课件
- 物资编码手册
- 三种水封井及标准图集
评论
0/150
提交评论