




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济南市市中学区数学九上期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是102.如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A. B. C. D.3.如图显示了用计算机模拟随机投掷一枚图钉的实验结果.随着试验次数的增加,“钉尖向上”的频率总在某个数字附近,显示出一定的稳定性,可以估计“钉尖向上”的概率是()A.0.620 B.0.618 C.0.610 D.10004.若点A(2,y1),B(﹣3,y2),C(﹣1,y3)三点在抛物线y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3 C.y2>y3>y1 D.y3>y1>y25.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A. B.2 C. D.6.某班抽取6名同学参加体能测试,成绩如下:1,95,1,80,80,1.下列表述错误的是()A.众数是1 B.平均数是1 C.中位数是80 D.极差是157.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(
)A.15
B.12
C.9
D.68.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y1>y29.矩形、菱形、正方形都具有的性质是()A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.对角线互相平分且相等10.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率11.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个 B.2个 C.3个 D.4个12.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是()A.100° B.110° C.120° D.130°二、填空题(每题4分,共24分)13.如果3a=4b(a、b都不等于零),那么a+bb=_____14.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.15.如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=,那么BC=____________.16.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=______.17.已知一次函数y1=x+m的图象如图所示,反比例函数y2=,当x>0时,y2随x的增大而_____(填“增大”或“减小”).18.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于__________.三、解答题(共78分)19.(8分)对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和,,所以.(1)计算:,;(2)小明在计算时发现几个结果都为正整数,小明猜想所有的均为正整数,你觉得这个猜想正确吗?请判断并说明理由;(3)若,都是“相异数”,其中,(,,、都是正整数),当时,求的最大值.20.(8分)根据2019年莆田市初中毕业升学体育考试内容要求,甲、乙、丙在某节体育课他们各自随机分别到篮球场A处进行篮球运球绕杆往返训练或到足球场B处进行足球运球绕杆训练,三名学生随机选择其中的一场地进行训练.(1)用列表法或树形图表示出的所用可能出现的结果;(2)求甲、乙、丙三名学生在同一场地进行训练的概率;(3)求甲、乙、丙三名学生中至少有两人在B处场地进行训练的概率.21.(8分)(1)解方程:(2)如图,是等腰直角三角形,是斜边,将绕点逆时针旋转后,能与重合,如果,那么的长等于多少?22.(10分)如图1,将边长为的正方形如图放置在直角坐标系中.(1)如图2,若将正方形绕点顺时针旋转时,求点的坐标;(2)如图3,若将正方形绕点顺时针旋转时,求点的坐标.23.(10分)如图,是的弦,过的中点作,垂足为,过点作直线交的延长线于点,使得.(1)求证:是的切线;(2)若,,求的边上的高.(3)在(2)的条件下,求的面积.24.(10分)(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.25.(12分)如图,Rt△ABC中,∠B=90°,点D在边AC上,且DE⊥AC交BC于点E.(1)求证:△CDE∽△CBA;(2)若AB=3,AC=5,E是BC中点,求DE的长.26.如果一个直角三角形的两条直角边的长相差2cm,面积是24,那么这个三角形的两条直角边分别是多少?
参考答案一、选择题(每题4分,共48分)1、B【解题分析】选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D,一组数据1,2,3,4,5的平均数=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.2、A【解题分析】先画树状图展示所有6种等可能的结果数,找出停止后指针指向相同颜色的结果数,然后根据概率公式计算.【题目详解】画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.【题目点拨】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.3、B【解题分析】结合给出的图形以及在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,解答即可.【题目详解】由图象可知随着实验次数的增加,“钉尖向上”的频率总在0.1附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.1.故选B.【题目点拨】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.4、C【分析】先求出二次函数的图象的对称轴,然后判断出,,在抛物线上的位置,再根据二次函数的增减性求解.【题目详解】解:∵二次函数中,∴开口向上,对称轴为,∵中,∴最小,又∵,都在对称轴的左侧,而在对称轴的左侧,随得增大而减小,故.∴.故选:C.【题目点拨】本题考查二次函数的图象与性质,特别是对称轴与其两侧的增减性,熟练掌握图象与性质是解答关键.5、D【解题分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【题目详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n时y取最小值,x=1时y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此种情形不合题意,所以m+n=﹣1+=.6、C【分析】本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和极差的定义可分别求出.【题目详解】解:这组数据中1出现了3次,出现的次数最多,所以这组数据的众数位1;由平均数公式求得这组数据的平均数位1,极差为95-80=15;将这组数据按从大到校的顺序排列,第3,4个数是1,故中位数为1.所以选项C错误.故选C.【题目点拨】本题考查了统计学中的平均数,众数,中位数与极差的定义.解答这类题学生常常对中位数的计算方法掌握不好而错选.7、A【分析】根据三角函数的定义直接求解.【题目详解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故选A8、B【解题分析】分析:根据题意,可得这个反比例函数图象所在的象限及每个象限的增减性,比较三个点的纵横坐标,分析可得三点纵坐标的大小,即可得答案.详解:∵双曲线中的-(k1+1)<0,∴这个反比例函数在二、四象限,且在每个象限都是增函数,且1<,
∴y1>0,y1<y3<0;
故有y1>y3>y1.
故选B.点睛:考查了运用反比例函数图象的性质判断函数值的大小,解题关键牢记反比例函数(x≠0)的性质:当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大.
9、B【分析】矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.【题目详解】解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.
故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.
故选:B.【题目点拨】本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.10、C【解题分析】解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;D.任意写出一个整数,能被2整除的概率为,故此选项错误.故选C.11、C【解题分析】①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;
②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;
③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.【题目详解】:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,结论①错误;
②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),
∴2≤c≤3,
∴-1≤a≤-,结论②正确;
③∵a<0,顶点坐标为(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
又∵a<0,
∴抛物线开口向下,
∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
故选C.【题目点拨】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.12、C【分析】直接利用圆周角定理求解.【题目详解】解:∵∠ABC和∠AOC所对的弧为,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(每题4分,共24分)13、7【解题分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【题目详解】∵3a=4b(a、b都不等于零),∴设a=4x,则b=3x,那么a+ba故答案为:73【题目点拨】此题主要考查了比例的性质,正确表示出a,b的值是解题关键.14、(0,0)【解题分析】根据坐标的平移规律解答即可.【题目详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【题目点拨】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.15、2【分析】根据垂径定理得出AN=CN,AM=BM,根据三角形的中位线性质得出BC=2MN,即可得出答案.【题目详解】解:∵OM⊥AB,ON⊥AC,OM过O,ON过O,
∴AN=CN,AM=BM,
∴BC=2MN,
∵MN=,∴BC=2,故答案为:2.【题目点拨】本题考查了垂径定理和三角形的中位线性质,能熟记知识点的内容是解此题的关键,注意:垂直于弦的直径平分弦.16、1【解题分析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【题目详解】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=1.故答案是:1.【题目点拨】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.17、减小.【分析】根据一次函数图象与y轴交点可得m<2,进而可得2-m>0,再根据反比例函数图象的性质可得答案.【题目详解】根据一次函数y1=x+m的图象可得m<2,∴2﹣m>0,∴反比例函数y2=的图象在一,三象限,当x>0时,y2随x的增大而减小,故答案为:减小.【题目点拨】此题主要考查了反比例函数的性质,以及一次函数的性质,关键是正确判断出m的取值范围.18、或【解题分析】将情况分为腰比底边长和腰比底边短两种情况来讨论,根据题意求出底边的长进而求出余弦值即可.【题目详解】当腰比底边长长时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为2,所以这个等边三角形底角的余弦值为;当腰比底边长短时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为8,所以这个等边三角形底角的余弦值为.【题目点拨】本题主要考查对新定义的理解能力、角的余弦的意义,熟练掌握角的余弦的意义是解答本题的关键.三、解答题(共78分)19、(1)10;12.(2)猜想正确.理由见解析;(3).【分析】(1)根据“相异数”的定义即可求解;(2)设的三个数位数字分别为,,,根据“相异数”的定义列出即可求解;(3)根据,都是“相异数”,得到,,根据求出x,y的值即可求解.【题目详解】(1);.(2)猜想正确.设的三个数位数字分别为,,,即,.因为,,均为正整数,所以任意为正整数.(3)∵,都是“相异数”,∴;.∵,∴,∴,∵,,且,都是正整数,∴或或或,∵是“相异数”,∴;∵是“相异数”,∴,∴满足条件的有,或,或,∴或或,∴的最大值为.【题目点拨】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.20、(1)共有8种可能;(2);(3)【分析】(1)用树状图分3次实验列举出所有情况即可;
(2)看3人在同一场地进行训练的情况数占总情况数的多少即可;
(3)看至少有两人在处场地进行训练的情况数占总情况数的多少即可.【题目详解】(1)由上树状图可知甲、乙、丙三名学生进行体育训练共有8种可能,(2)所有出现情况等可能,其中甲、乙、丙三名学生在同一场地进行训练有2种可能并把它记为事件A,则P(A)=(3)其中甲、乙、1丙三名学生中至少有两人在B处场地进行训练有4种可能并把它记为事件B,则P(B)=【题目点拨】此题考查列表法与画树状图法,解题关键在于掌握概率=所求情况数与总情况数之比.21、(1)=1,=5;(2)2【题目详解】(1)解:(x﹣1)(x﹣5)=0x﹣1=0或x﹣5=0∴,,(2)解:∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP=AP′,∠PAP′=∠BAC=90°,∴△APP′为等腰直角三角形,∴PP′=AP=2.【题目点拨】本题考查了解一元二次方程,等腰直角三角形,旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.22、(1)A;(2)B【分析】(1)作轴于点,则,,求得AD=1,根据勾股定理求得OD=,即可得出点A的坐标;(2)连接BO,过点作轴于点,根据旋转角为75°,可得∠BOE=30°,根据勾股定理可得,再根据Rt△BOD中,,,可得点B的坐标.【题目详解】解:(1)如图1,作轴于点,则,,点的坐标为.图1(2)如图2,连接,过点作轴于点,则,在中,在中,,点的坐标为.图2【题目点拨】本题主要考查了旋转变换以及正方形的性质,解决问题的关键是作辅助线构造直角三角形,解题时注意:正方形的四条边都相等,四个角都是直角.23、(1)见解析;(2)4.5;(3)27【分析】(1)根据等腰三角形的性质可得,结合切线的判定方法可得结论;(2)过点作于点,连接,结合中点及等腰三角形的性质可得,利用勾股定理可得DF的长;(3)根据两组对应角分别相等的两个三角形相似可得,利用相似三角形对应线段成比例可求得EO长,由三角形面积公式求解即可.【题目详解】(1)证明:∵,,∴,,∵,∴,∴,∴∵是圆的半径,∴是的切线;(2)如图,过点作于点,连接,∵点是的中点,,∴,,又∵,,,,∴,∴,(3)∵,∴,∵,,∴,∴,∴,由(2)得即,得,∴的面积是:.【题目点拨】本题是圆与三角形的综合题,涉及的知识点主要有切线的判定与性质、垂径定理、勾股定理、相似三角形的判定和性质,明确题意,确定所求问题的条件是解题的关键.24、(1)面料的单价为3元/米,里料的单价为2元/米;(2)①5;②5%.【分析】(1)、设里料的单价为x元/米,面料的单价为(2x+10)元/米,根据成本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省深圳市宝安区2025年高三生物试题模拟一含解析
- 郑州汽车工程职业学院《材料工程伦理》2023-2024学年第二学期期末试卷
- 湖南农业大学《蒙古族古近代文学史》2023-2024学年第二学期期末试卷
- 江西省玉山一中2024-2025学年高三下学期第19周语文试题考试试题含解析
- 古田县2025年小升初全真模拟数学检测卷含解析
- 湖南汽车工程职业学院《修复儿童口腔牙体牙髓》2023-2024学年第二学期期末试卷
- 甘肃省白银市平川区2025年小升初全真数学模拟预测卷含解析
- 北京工业职业技术学院《唐诗和唐宋词经典导读》2023-2024学年第一学期期末试卷
- 2025年苏州市工业重点中学初三下期中试题含解析
- 石家庄职业技术学院《中国现当代文学A》2023-2024学年第二学期期末试卷
- 大学生创业导论学习通超星期末考试答案章节答案2024年
- 江苏金陵科技集团有限公司招聘笔试题库2024
- 2024-2025学年佛山市南海区六上数学期末达标检测试题含解析
- 2024年四川省成都市中考地理+生物试卷真题(含答案解析)
- 2024年郑州铁路职业技术学院单招职业适应性测试题库必考题
- 小学语文新课标教学目标解读及教学建议
- 建筑防水工程技术规程DBJ-T 15-19-2020
- 2024年全民国家安全教育日知识竞赛考试题库300题(含答案)
- 艾滋病保密制度
- 认知行为疗法讲解
- 史丹利行业分析
评论
0/150
提交评论