版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市某重点中学2024届高一上数学期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数若是奇函数,则()A. B.C. D.12.已知函数若,则实数的值是()A.1 B.2C.3 D.43.某同学用“五点法”画函数fxωx+φ0ππ3π2xπ5πA05-50根据表格中的数据,函数fxA.fx=5C.fx=54.()A. B.C. D.5.将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这样的分割被称为黄金分割,黄金分割蕴藏着丰富的数学知识和美学价值,被广泛运用于艺术创作、工艺设计等领域.黄金分制的比值为无理数,该值恰好等于,则()A. B.C. D.6.若是三角形的一个内角,且,则三角形的形状为()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定7.有一组实验数据如下现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最佳的一个是()A. B.C. D.8.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.9.已知向量,,则在方向上的投影为A. B.8C. D.10.若函数在区间上存在零点,则实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(,,)的部分图象如图,则函数的单调递增区间为______.12.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数的值域为.其中正确命题的编号为______13.若,则___________;14.设为锐角,若,则的值为_______.15.设函数f(x)=,则f(-1)+f(1)=______16.已知函数,方程有四个不相等的实数根(1)实数m的取值范围为_____________;(2)的取值范围为______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数常数证明在上是减函数,在上是增函数;当时,求的单调区间;对于中的函数和函数,若对任意,总存在,使得成立,求实数a的值18.已知函数(1)判断函数在上的单调性,并用定义法证明你的结论;(2)若,求函数的最大值和最小值.19.食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来了一定的危害.为了给消费者带来放心的蔬菜,某农村合作社每年投入资金万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入资金万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的种菜经验,发现种西红柿的年收入、种黄瓜的年收入与各自的资金投入(单位:万元)满足,.设甲大棚的资金投入为(单位:万元),每年两个大棚的总收入为(单位:万元)(1)求的值;(2)试问如何安排甲、乙两个大棚的资金投入,才能使总收入最大20.已知函数部分图象如图所示.(1)当时,求的最值;(2)设,若关于的不等式恒成立,求实数的取值范围.21.已知为二次函数,且(1)求的表达式;(2)设,其中,m为常数且,求函数的最值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】先求出的值,再根据奇函数的性质,可得到的值,最后代入,可得到答案.【题目详解】∵奇函数故选:A【题目点拨】本题主要考查利用函数的奇偶性求值的问题,属于基础题.2、B【解题分析】根据分段函数分段处理的原则,求出,代入即可求解.【题目详解】由题意可知,,,又因为,所以,解得.故选:B.3、A【解题分析】根据函数最值,可求得A值,根据周期公式,可求得ω值,代入特殊点,可求得φ值,即可得答案.【题目详解】由题意得最大值为5,最小值为-5,所以A=5,T2=5π6-又2×π3+φ=所以fx的解析式可以是故选:A4、D【解题分析】根据诱导公式以及特殊角的三角函数值,即可容易求得结果.【题目详解】因为.故选:D.5、C【解题分析】根据余弦二倍角公式即可计算求值.【题目详解】∵=,∴,∴.故选:C.6、A【解题分析】已知式平方后可判断为正判断的正负,从而判断三角形形状【题目详解】解:∵,∴,∵是三角形的一个内角,则,∴,∴为钝角,∴这个三角形为钝角三角形.故选:A7、C【解题分析】选代入四个选项的解析式中选取所得的最接近的解析式即可.【题目详解】对于选项A:当时,,与相差较多,当时,,与相差较多,故选项A不正确;对于选项B:当时,,与相差较多,当时,,与相差较多,故选项B不正确;对于选项C:当时,,当时,,故选项C正确;对于选项D:当时,,与相差较多,当时,,与相差较多,故选项D不正确;故选:C.8、C【解题分析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【题目详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【题目点拨】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.9、D【解题分析】依题意有投影为.10、C【解题分析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围【题目详解】由题,函数f(x)=ax+1单调,又在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故选C【题目点拨】本题主要考查函数的零点的判定定理的应用,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由函数的图象得到函数的周期,同时根据图象的性质求得一个单调增区间,然后利用周期性即可写出所有的增区间.【题目详解】由图可知函数f(x)的最小正周期.如图所示,一个周期内的最低点和最高点分别记作,分别作在轴上的射影,记作,根据的对称性可得的横坐标分别为,∴是函数f(x)的一个单调增区间,∴函数的单调增区间是,故答案为:,【题目点拨】本题关键在于掌握函数图象的对称性和周期性.一般往往先从函数的图象确定函数中的各个参数的值,再利用函数的解析式和正弦函数的性质求得单调区间,但是直接由图象得到函数的周期,并根据函数的图象的性质求得一个单调增区间,进而写出所有的增区间,更为简洁.12、②③【解题分析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.13、1【解题分析】根据函数解析式,从里到外计算即可得解.【题目详解】,所以.故答案为:114、【解题分析】由条件求得的值,利用二倍角公式求得和的值,再根据,利用两角差的正弦公式计算求得结果【题目详解】∵为锐角,,∴,∴,故,故答案为.【题目点拨】本题主要考查同角三角函数的基本关系、两角和差的正弦公式、二倍角公式的应用,属于中档题15、3【解题分析】直接利用函数的解析式,求函数值即可【题目详解】函数f(x)=,则==3故答案为3【题目点拨】本题考查分段函数的应用,函数值的求法,考查计算能力16、①.②.【解题分析】利用数形结合可得实数m的取值范围,然后利用对数函数的性质可得,再利用正弦函数的对称性及二次函数的性质即求.【题目详解】作出函数与函数的图象,则可知实数m的取值范围为,由题可知,,∵,∴,即,又,,∴,又函数在上单调递增,∴,即.故答案为:;.【题目点拨】关键点点睛;本题的关键是数形结合,结合对数函数的性质及正弦函数的性质可得,再利用二次函数的性质即解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析;(3)【解题分析】利用定义证明即可;把看成整体,研究对勾函数的单调性以及利用复合函数的单调性的性质得到该函数的单调性;对于任意的,总存在,使得可转化成的值域为的值域的子集,建立关系式,解之即可【题目详解】证明::设,,且,,,,,当时,即,当时,即,当时,,即,此时函数为减函数,当时,,即,此时函数为增函数,故在上是减函数,在上是增函数;当时,,,设,则,,由可知在上是减函数,在上是增函数;,,即,,即在上是减函数,在上是增函数;由于减函数,故,又由(2)得由题意,的值域为的值域的子集,从而有,解得【题目点拨】本题主要考查定义法证明函数单调性,利用单调性求函数的值域,以及函数恒成立问题,同时考查了转化的思想和运算求解的能力,是中档题18、(1)减函数,证明见解析(2),【解题分析】(1)根据定义法证明函数单调性即可求解;(2)根据(1)中的单调性求解最值即可.【小问1详解】任取,,且则-因为,所以,所以,即,所以在区间上是减函数【小问2详解】因为函数在区间上是减函数,所以,.19、(1);(2)当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大.【解题分析】(1)根据题意,可分别求得甲、乙两个大棚的资金投入值,代入解析式即可求得总收益.(2)表示出总收益的表达式,并求得自变量取值范围,利用换元法转化为二次函数形式,即可确定最大值.【题目详解】(1)当甲大棚的资金投入为50万元时,乙大棚资金投入为150万元,则由足,可得总收益为万元;(2)根据题意,可知总收益为满足,解得,令,所以,因为,所以当即时总收益最大,最大收益为万元,所以当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大,最大收益为282万元.【题目点拨】本题考查了函数在实际问题中的应用,分段函数模型的应用,二次函数型求最值的应用,属于基础题.20、(1),;(2)【解题分析】(1)根据正弦型图像的性质求出函数解析式,在根据求出函数最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《骆驼寻宝记》教学设计
- 环保工程师劳动合同聘用协议书
- 生态农业园区建设施工合同
- 生物科技二手房交易模板
- 租赁车辆防雾霾装备要求
- 城市交通规划公众参与
- 矿山工程招投标模板
- 广告拍摄墙体壁画施工合同
- 居民区翻新施工合同
- 化妆品租赁田地合同
- 马凳筋施工专项方案(12页)
- 第十三章多相流计量技术
- 李铁安:高品质课堂的塑造
- 幼儿园课程内容的选择(课堂PPT)
- 岩石力学基本教程 教学PPT 第6章 地应力
- 2019年航测遥感试卷及答案82分(错题给出参考答案)
- 轧机安装方案
- 喉痹(咽炎)中医护理方案
- DBJ33_T 1268-2022 工程建设工法编制标准
- 钢结构焊接施工记录含内容
- 治安保卫重点要害部位审定表
评论
0/150
提交评论