版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省皖北名校联盟高一上数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(且)的图象一定经过的点是()A. B.C. D.2.下列各组中的两个函数表示同一函数的是()A. B.y=lnx2,y=2lnxC D.3.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数4.当前,全球疫情仍处于大流行状态,多国放松管控给我国外防输入带来挑战,冬季季节因素导致周边国家疫情输入我国风险大大增加.现有一组境外输入病例数据:x(月份)12345y(人数)97159198235261则x,y的函数关系与下列哪类函数最接近()A. B.C. D.5.若,,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限6.下列函数中,既是偶函数又在区间0,+∞A.y=-x2C.y=x37.函数f(x)=x2-3x-4的零点是()A. B.C. D.8.已知函数的定义域为,命题为奇函数,命题,那么是的()A.充分必要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件9.函数的大致图象是A. B.C. D.10.已知函数,若函数有两个不同的零点,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若关于的方程只有一个实根,则实数的取值范围是______.12.求值:2+=____________13.若函数是幂函数,则函数(其中,)的图象过定点的坐标为__________14.已知函数,则_________15.幂函数f(x)的图象过点(4,2),则f(x)的解析式是______16.等比数列中,,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且的最小正周期为.(1)求;(2)当时,求函数的最大值和最小值并求相应的值.18.已知,求值;已知,求的值19.已知函数.(1)判断函数f(x)的奇偶性;(2)讨论f(x)的单调性;(3)解不等式.20.已知函数fx=-x2(1)求不等式cx(2)当gx=fx-mx在21.(1)已知角的终边过点,且,求的值;(2)已知,,且,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由函数解析式知当时无论参数取何值时,图象必过定点即知正确选项.【题目详解】由函数解析式,知:当时,,即函数必过,故选:D.【题目点拨】本题考查了指数型函数过定点,根据解析式分析自变量取何值时函数值不随参数变化而变化,此时所得即为函数的定点.2、D【解题分析】逐项判断函数的定义域与对应法则是否相同,即可得出结果.【题目详解】对于A,
定义域为,而定义域为,定义域相同,但对应法则不同,故不是同一函数,排除A;对于B,定义域,而定义域为,所以定义域不同,不是同一函数,排除B;对于C,
定义域为,而定义域为,所以定义域不同,不是同一函数,排除C;对于D,与的定义域均为,且,对应法则一致,所以是同一函数,D正确.故选:D3、B【解题分析】根据特称量词命题的否定是全称量词命题即可求解【题目详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B4、D【解题分析】根据表中数据可得每月人数的增长速度在逐月减缓,即可选出答案.【题目详解】计算可知,每月人数增长分别为62,39,37,26,增长速度在逐月减缓,符合对数函数的特点,故选:D5、B【解题分析】应用诱导公式可得,,进而判断角的终边所在象限.【题目详解】由题设,,,所以角的终边在第二象限.故选:B6、A【解题分析】根据基本函数的性质和偶函数的定义分析判断即可【题目详解】对于A,因为f(x)=-(-x)2=-x2=f(x),所以y=-x2是偶函数,对于B,y=2x是非奇非偶函数,所以对于C,因为f(-x)=(-x)3=-x3对于D,y=lnx=lnx,x>0故选:A7、D【解题分析】直接利用函数零点定义,解即可.【题目详解】由,解得或,函数零点是.故选:.【题目点拨】本题主要考查的是函数零点的求法,直接利用定义可以求解,是基础题.8、C【解题分析】根据奇函数的性质及命题充分必要性的概念直接判断.【题目详解】为奇函数,则,但,无法得函数为奇函数,例如,满足,但是为偶函数,所以是的充分不必要条件,故选:C.9、D【解题分析】关于对称,且时,,故选D10、A【解题分析】将函数零点个数问题转化为图象交点个数问题,再数形结合得解.【题目详解】函数有两个不同的零点,即方程有两个不同的根,从而函数的图象和函数的图象有两个不同的交点,由可知,当时,函数是周期为1的函数,如图,在同一直角坐标系中作出函数的图象和函数的图象,数形结合可得,当即时,两函数图象有两个不同的交点,故函数有两个不同的零点.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】把关于的方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,结合图象,即可求解.【题目详解】由题意,关于方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,如图所示,结合图象可知,当直线介于和之间的直线或与重合的直线符合题意,又由直线在轴上的截距分别为,所以实数的取值范围是.故答案为.【题目点拨】本题主要考查了直线与圆的位置关系的应用,其中解答中把方程的解转化为直线与曲线的图象的交点个数,结合图象求解是解答的关键,着重考查了转化思想,以及数形结合思想的应用,属于基础题.12、-3【解题分析】利用对数、指数的性质和运算法则求解【题目详解】解:()lg(1)lg1[()3]2+()02+1=﹣3故答案为﹣3【题目点拨】本题考查对数式、指数式的化简求值,是基础题,解题时要认真审题,注意对数、指数的性质、运算法则的合理运用13、(3,0)【解题分析】若函数是幂函数,则,则函数(其中,),令,计算得出:,,其图象过定点的坐标为14、1【解题分析】根据分段函数的定义即可求解.【题目详解】解:因为函数,所以,所以,故答案为:1.15、【解题分析】根据幂函数的概念设f(x)=xα,将点的坐标代入即可求得α值,从而求得函数解析式【题目详解】设f(x)=xα,∵幂函数y=f(x)的图象过点(4,2),∴4α=2∴α=这个函数解析式为故答案为【题目点拨】本题主要考查了待定系数法求幂函数解析式、指数方程解法等知识,属于基础题16、【解题分析】等比数列中,由可得.等比数列,构成以为首项,为公比的等比数列,所以【题目点拨】若数列为等比数列,则构成等比数列三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)时,,时,.【解题分析】(1)化简即得函数,再根据函数的周期求出,即得解;(2)由题得,再根据三角函数的图像和性质即得解.【题目详解】解:(1)函数,因为,所以,解得,所以(2)当时,,当,即时,,当,即时,,所以,时,,时,.18、(1)(2)【解题分析】(1)由三角函数中平方关系求得,再由诱导公式可商数关系化简求值;(2)考虑到已知角与待求角互余,可直接利用诱导公式求值【题目详解】解:已知,所以:,所以:,,,由于,所以:【题目点拨】本题考查同角间的三角函数关系与诱导公式,解题时需考虑已知角与未知角之间的关系,以寻求运用恰当的公式进行化简变形与求值19、(1)奇函数(2)在上单调递增(3)【解题分析】(1)依据奇偶函数定义去判断即可;(2)以定义法去证明函数的单调性;(3)把抽象不等式转化为整式不等式再去求解即可.【小问1详解】由得,所以函数f(x)的定义域为,关于原点对称又因为,故函数为奇函数【小问2详解】设任意,,则又,则,则,即故在上单调递增【小问3详解】由(2)知,函数在上单调递增,所以由,可得,解得,所以不等式的解集为20、(1)x∈(2)m≥1【解题分析】(1)由不等式fx>0的解集为x1<x<2可得x2-bx-c=0的两根是1,2,根据根系数的关系可求b=3和c=-2,代入不等式cx2【题目详解】(1)由fx>0的解集为x1<x<2,则-x2+bx+c>0的解集为x1<x<2则1+2=b1×2=-c由cx则解集为x∈(2)由gx=-x则3-m2解出m≥1【题目点拨】本题考查了三个二次的关系,(1)二次函数的图像与x轴交点的横坐标,二次不等解集的端点值,一元二次方程的根是同一个量的不同表现形式;(2)二次函数、二次不等式,二次方程常称作“三个二次”,其中的某类的问题常可以转化为另两类问题加以解决,所以三者的关系密切而重要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多层陶瓷片式电感市场现状及未来发展趋势(2024版)
- 融文:2024撰写现代化PR报告的专业指南
- 荣泰煤矿6-2中煤大巷煤柱回收开采方案
- 水源地合理开采及恢复机制研究
- 广州-PEP-2024年11版小学4年级上册英语第6单元测验试卷
- Python程序设计实践-教学大纲、授课计划
- 2024年电能仪表项目资金需求报告代可行性研究报告
- 预制菜分类原则(征求意见稿)编制说明
- 珠宝销售个人工作计划
- 新娘结婚致辞
- 中建股份公司合同管理手册
- 仓库分区及状态标识
- 浅析微博营销对消费者购买行为的影响
- 超高层建筑电气设计要点分析
- 精神堡垒报价单
- 德国支持中小企业科技创新的政策资料
- 1到10套文章听力 (1)[教案教学]
- 全公安机关易制爆危险化学品安全监管要点暨检查记录表
- 关于集中式供水单位卫生监督管理情况汇报
- 644523009毕业设计(论文)小型反应釜控制系统的仿真设计
- 公租房未婚承诺书
评论
0/150
提交评论