版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省随州市高新区大堰坡中学数学九年级第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,中,内切圆和边、、分别相切于点、、,若,,则的度数是()A. B. C. D.2.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9 B.10 C.11 D.123.中,,若,,则的长为()A. B. C. D.54.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是A.180个,160个 B.170个,160个C.170个,180个 D.160个,200个5.已知三点在抛物线上,则的大小关系正确的是()A. B.C. D.6.下列事件是必然事件的为()A.明天早上会下雨 B.任意一个三角形,它的内角和等于180°C.掷一枚硬币,正面朝上 D.打开电视机,正在播放“义乌新闻”7.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A. B. C.3 D.58.如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是()A.1 B.1.2 C.2 D.39.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为(
)A.12π B.24π C.36π D.48π10.如图,在矩形中,,,以为直径作.将矩形绕点旋转,使所得矩形的边与相切,切点为,边与相交于点,则的长为()A.2.5 B.1.5 C.3 D.411.关于x的一元二次方程有两个实数根,,则k的值()A.0或2 B.-2或2 C.-2 D.212.已知x=1是方程x2+px+1=0的一个实数根,则p的值是()A.0 B.1 C.2 D.﹣2二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.14.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50°,则∠AOD=_____________15.已知_______16.若点P的坐标是(﹣4,2),则点P关于原点的对称点坐标是_____.17.一个不透明的袋子中装有3个白球和若干个黑球,它们除颜色外,完全相同.从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.6,则可判断袋子中黑球的个数为______.18.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是_____.三、解答题(共78分)19.(8分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(8分)如图,已知抛物线经过的三个顶点,其中点,点,轴,点是直线下方抛物线上的动点.(1)求抛物线的解析式;(2)过点且与轴平行的直线与直线、分别交与点、,当四边形的面积最大时,求点的坐标;(3)当点为抛物线的顶点时,在直线上是否存在点,使得以、、为顶点的三角形与相似,若存在,直接写出点的坐标;若不存在,请说明理由.21.(8分)某商店销售一种商品,每件成本8元,规定每件商品售价不低于成本,且不高于20元,经市场调查每天的销售量y(件)与每件售价x(元)满足一次函数关系,部分数据如下表:售价x(元件)1011121314x销售量y(件)100908070(1)将上面的表格填充完整;(2)设该商品每天的总利润为w元,求w与x之间的函数表达式;(3)计算(2)中售价为多少元时,获得最大利润,最大利润是多少?22.(10分)如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD=6,BD=8,求弦CD的长为;②若AD+BD=14,求的最大值,并求出此时⊙O的半径.23.(10分)如图,函数y=2x和y=﹣x+4的图象相交于点A,(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥﹣x+4的解集.24.(10分)如图1,已知抛物线y=x2+bx+c经过点A(3,0),点B(﹣1,0),与y轴负半轴交于点C,连接BC、AC.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得以A、B、C、P为顶点的四边形的面积等于△ABC的面积的倍?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,直线BC与抛物线的对称轴交于点K,将直线AC绕点C按顺时针方向旋转α°,直线AC在旋转过程中的对应直线A′C与抛物线的另一个交点为M.求在旋转过程中△MCK为等腰三角形时点M的坐标.25.(12分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.26.某市为调查市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“:自行车,:电动车,:公交车,:家庭汽车,:其他”五个选项中选择最常用的一项.将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了名市民,其中“:公交车”选项的有人;扇形统计图中,项对应的扇形圆心角是度;(2)若甲、乙两人上班时从、、、四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.
参考答案一、选择题(每题4分,共48分)1、D【分析】连接IE,IF,先利用三角形内角和定理求出的度数,然后根据四边形内角和求出的度数,最后利用圆周角定理即可得出答案.【题目详解】连接IE,IF∵,∵I是内切圆圆心∴故选:D.【题目点拨】本题主要考查三角形内角和定理,四边形内角和,圆周角定理,掌握三角形内角和定理,四边形内角和,圆周角定理是解题的关键.2、B【分析】观察得出第n个数为(-2)n,根据最后三个数的和为768,列出方程,求解即可.【题目详解】由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,当n为偶数:整理得出:3×2n-2=768,解得:n=10;当n为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B.3、B【分析】根据题意,可得=,又由AB=4,代入即可得AC的值.【题目详解】解:∵中,,,∴=.∴AC=AB==.故选B.【题目点拨】本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答.4、B【解题分析】根据中位数和众数的定义分别进行解答即可.【题目详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选B.【题目点拨】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.5、B【分析】先确定抛物线的对称轴,然后根据抛物线的对称性求出点关于对称轴对称的点的坐标,再利用二次函数的增减性判断即可.【题目详解】解:∵抛物线的对称轴是直线x=2,∴点关于对称轴对称的点的坐标是,∵当x<2时,y随x的增大而增大,且0<1<1.5,∴.故选:B.【题目点拨】本题考查了二次函数的性质,属于基本题型,熟练掌握二次函数的性质是解答的关键.6、B【分析】直接利用随机事件以及必然事件的定义分析得出答案.【题目详解】解:A、明天会下雨,是随机事件,不合题意;B、任意一个三角形,它的内角和等于180°,是必然事件,符合题意;C、掷一枚硬币,正面朝上,是随机事件,不合题意;D、打开电视机,正在播放“义乌新闻”,是随机事件,不合题意.故选:B.【题目点拨】此题主要考查了随机事件以及必然事件,正确掌握相关定义是解题关键.7、B【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【题目详解】过点D做DF⊥BC于F,由已知,BC=5,∵四边形ABCD是菱形,∴DC=5,∵BE=3DE,∴设DE=x,则BE=3x,∴DF=3x,BF=x,FC=5-x,在Rt△DFC中,DF2+FC2=DC2,∴(3x)2+(5-x)2=52,∴解得x=1,∴DE=1,FD=3,设OB=a,则点D坐标为(1,a+3),点C坐标为(5,a),∵点D、C在双曲线上,∴1×(a+3)=5a,∴a=,∴点C坐标为(5,)∴k=.故选B.【题目点拨】本题是代数几何综合题,考查了数形结合思想和反比例函数k值性质.解题关键是通过勾股定理构造方程.8、A【解题分析】利用圆周角性质和等腰三角形性质,确定AB为圆的直径,利用相似三角形的判定及性质,确定△ADE和△BCE边长之间的关系,利用相似比求出线段AE的长度即可.【题目详解】解:∵等腰Rt△ABC,BC=4,∴AB为⊙O的直径,AC=4,AB=4,∴∠D=90°,在Rt△ABD中,AD=,AB=4,∴BD=,∵∠D=∠C,∠DAC=∠CBE,∴△ADE∽△BCE,∵AD:BC=:4=1:5,∴相似比为1:5,设AE=x,∴BE=5x,∴DE=-5x,∴CE=28-25x,∵AC=4,∴x+28-25x=4,解得:x=1.故选A.【题目点拨】题目考查了圆的基本性质、等腰直角三角形性质、相似三角形的判定及应用等知识点,题目考查知识点较多,是一道综合性试题,题目难易程度适中,适合课后训练.9、B【解题分析】根据三视图:俯视图是圆,主视图与左视图是长方形可以确定该几何体是圆柱体,再利用已知数据计算圆柱体的体积.【题目详解】先由三视图确定该几何体是圆柱体,底面直径是4,半径是2,高是1.所以该几何体的体积为π×22×1=24π.故选B.【题目点拨】本题主要考查由三视图确定几何体和求圆柱体的面积,考查学生的空间想象能力.10、D【分析】连接OE,延长EO交CD于点G,作于点H,通过旋转的性质和添加的辅助线得到四边形和都是矩形,利用勾股定理求出的长度,最后利用垂径定理即可得出答案.【题目详解】连接OE,延长EO交CD于点G,作于点H则∵矩形ABCD绕点C旋转所得矩形为∴四边形和都是矩形,∵四边形都是矩形即故选:D.【题目点拨】本题主要考查矩形的性质,勾股定理及垂径定理,掌握矩形的性质,勾股定理及垂径定理是解题的关键.11、D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.【题目详解】解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D.【题目点拨】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.12、D【分析】把x=1代入x2+px+1=0,即可求得p的值.【题目详解】把x=1代入把x=1代入x2+px+1=0,得1+p+1=0,∴p=-2.故选D.【题目点拨】本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.二、填空题(每题4分,共24分)13、﹣1【题目详解】∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.14、80°【题目详解】解:∵AC是⊙O的切线,∴AB⊥AC,∵∠C=50°,∴∠B=90°﹣∠C=40°,∵OA=OB,∴∠ODB=∠B=40°,∴∠AOD=80°.故答案为80°.15、2【分析】设,分别用k表示x、y、z,然后代入计算,即可得到答案.【题目详解】解:根据题意,设,∴,,,∴;故答案为:2.【题目点拨】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k来表示x、y、z.16、(4,﹣2).【分析】直接利用关于原点对称点的性质得出答案.【题目详解】解:点P的坐标是(﹣4,2),则点P关于原点的对称点坐标是:(4,﹣2).故答案为:(4,﹣2).【题目点拨】本题考查点的对称,熟记口诀:关于谁对称,谁不变,另一个变号,关于原点对称,两个都变号.17、2【分析】由摸到白球的频率稳定在0.6附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【题目详解】解:设黑球个数为:x个,∵摸到白色球的频率稳定在0.6左右,∴口袋中得到白色球的概率为0.6,∴,解得:x=2,故黑球的个数为2个.故答案为2.【题目点拨】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.18、【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【题目详解】解:点M,N分别是AB,BC的中点,,当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,,,,,故答案为:.【题目点拨】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是利用中位线性质将MN的值最大问题转化为AC的最大值问题,难度不大.三、解答题(共78分)19、这段河的宽约为37米.【分析】延长CA交BE于点D,得,设,得米,米,根据列方程求出x的值即可得.【题目详解】解:如图,延长CA交BE于点D,则,由题意知,,,设米,则米,米,在中,,,解得,答:这段河的宽约为37米.20、(1);(2);(3)存在,,【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,),表示出PE=,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出最值即可;(3)先判断出PF=CF,再得到∠PCA=∠EAC,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【题目详解】(1)∵点,在抛物线上,∴,∴,∴抛物线的解析式为,(2)∵AC∥x轴,A(0,3)∴=3,∴x1=−6,x2=0,∴点C的坐标(−8,3),∵点,,求得直线AB的解析式为y=−x+3,设点P(m,)∴E(m,−m+3)∴PE=−m+3−()=,∵AC⊥EP,AC=8,∴S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×8×()=−m2−12m=−(m+6)2+36,∵−8<m<0∴当m=−6时,四边形AECP的面积的最大,此时点P(−6,0);(3)∵=,∴P(−4,−1),∴PF=yF−yP=4,CF=xF−xC=4,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,3)且AB==12,AC=8,CP=,∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=−或t=−(不符合题意,舍)∴Q(−,3)②当△CQP∽△ABC时,∴,∴,∴t=4或t=−20(不符合题意,舍)∴Q(4,3)综上,存在点.【题目点拨】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.21、(1)见解析;(2)w=﹣10x2+280x﹣1600;(3)售价为14元时,获得最大利润,最大利润是360元.【分析】(1)设y=kx+b,由待定系数法可列出方程组:,解得:则y=﹣10x+200,当x=14时,y=60.(2)由题意得,w与x之间的函数表达式为:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售价为14元时,获得最大利润,最大利润是360元.【题目详解】解:(1)设销售量y(件)与每件售价x(元)满足一次函数关系为y=kx+b,∴,解得:,∴销售量y(件)与每件售价x(元)满足一次函数关系为y=﹣10x+200,当x=14时,y=60,故答案为:60,﹣10x+200;(2)由题意得,w与x之间的函数表达式为:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售价为14元时,获得最大利润,最大利润是360元.【题目点拨】本题的考点是一次函数及二次函数的综合应用.方法是根据题意列出函数式,再根据二次函数的性质求解.22、(1)CD2+BD2=2AD2,见解析;(2)BD2=CD2+2AD2,见解析;(3)①7,②最大值为,半径为【分析】(1)先判断出∠BAD=CAE,进而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根据勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出结论;(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出结论;(3)先根据勾股定理的出DE2=CD2+CE2=2CD2,再判断出△ACE≌△BCD(SAS),得出AE=BD,①将AD=6,BD=8代入DE2=2CD2中,即可得出结论;②先求出CD=7,再将AD+BD=14,CD=7代入,化简得出﹣(AD﹣)2+,进而求出AD,最后用勾股定理求出AB即可得出结论.【题目详解】解:(1)CD2+BD2=2AD2,理由:由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根据勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如图2,将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴BD=CE,在Rt△ADE中,AD=AE,∴∠ADE=45°,∴DE2=2AD2,∵∠ADC=45°,∴∠CDE=∠ADC+∠ADE=90°,根据勾股定理得,CE2=CD2+DE2=CD2+2AD2,即:BD2=CD2+2AD2;(3)如图3,过点C作CE⊥CD交DA的延长线于E,∴∠DCE=90°,∵∠ADC=45°,∴∠E=90°﹣∠ADC=45°=∠ADC,∴CD=CE,根据勾股定理得,DE2=CD2+CE2=2CD2,连接AC,BC,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=7,故答案为7;②∵AD+BD=14,∴CD=7,∴=AD•(BD+×7)=AD•(BD+7)=AD•BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣)2+,∴当AD=时,的最大值为,∵AD+BD=14,∴BD=14﹣=,在Rt△ABD中,根据勾股定理得,AB=,∴⊙O的半径为OA=AB=.【题目点拨】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.23、(1)A的坐标为(,3);(2)x≥.【解题分析】试题分析:(1)联立两直线解析式,解方程组即可得到点A的坐标;(2)根据图形,找出点A右边的部分的x的取值范围即可.试题解析:(1)由,解得:,∴A的坐标为(,3);(2)由图象,得不等式2x≥-x+4的解集为:x≥.24、(1)y=x2﹣x﹣;(2)存在符合条件的点P,且坐标为(,)、(,)、(1,﹣)、(2,﹣);(3)点M的坐标是(2,﹣)或(1,﹣).【分析】(1)知道A、B两点坐标后,利用待定系数法可确定该抛物线的解析式.(2)此题中,以A、B、C、P为顶点的四边形可分作两部分,若该四边形的面积是△ABC面积的1.5倍,那么四边形中除△ABC以外部分的面积应是△ABC面积的一半,分三种情况:①当点P在x轴上方时,△ABP的面积应该是△ABC面积的一半,因此点P的纵坐标应该是点C纵坐标绝对值的一半,代入抛物线解析式中即可确定点P的坐标;②当点P在B、C段时,显然△BPC的面积要远小于△ABC面积的一半,此种情况不予考虑;③当点P在A、C段时,由A、C的长以及△ACP的面积可求出点P到直线AC的距离,首先在射线CK上取线段CD,使得CD的长等于点P到直线AC的距离,先求出过点D且平行于l1的直线解析式,这条直线与抛物线的交点即为符合条件的点P.(3)从题干的旋转条件来看,直线l1旋转的范围应该是直线AC、直线BC中间的部分,而△MCK的腰和底并不明确,所以分情况讨论:①CK=CM、②KC=KM、③MC=MK;求出点M的坐标.【题目详解】解:(1)如图1,∵点A(3,0),点B(﹣1,0),∴,解得,则该抛物线的解析式为:y=x2﹣x﹣;(2)易知OA=3、OB=1、OC=,则:S△ABC=AB•OC=×4×=2.①当点P在x轴上方时,由题意知:S△ABP=S△ABC,则:点P到x轴的距离等于点C到x轴距离的一半,即点P的纵坐标为;令y=x2﹣x﹣=,化简得:2x2﹣4x﹣9=0解得x=;∴P1(,)、P2(,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多层陶瓷片式电感市场现状及未来发展趋势(2024版)
- 融文:2024撰写现代化PR报告的专业指南
- 荣泰煤矿6-2中煤大巷煤柱回收开采方案
- 水源地合理开采及恢复机制研究
- 广州-PEP-2024年11版小学4年级上册英语第6单元测验试卷
- Python程序设计实践-教学大纲、授课计划
- 2024年电能仪表项目资金需求报告代可行性研究报告
- 预制菜分类原则(征求意见稿)编制说明
- 珠宝销售个人工作计划
- 新娘结婚致辞
- 《剪映专业版:短视频创作案例教程(全彩慕课版)》 课件 第6章 创作生活Vlog
- 重大事故隐患判定标准与相关事故案例培训课件
- 唐诗宋词人文解读智慧树知到期末考试答案章节答案2024年上海交通大学
- 《电视摄像》电子教案
- 火龙罐综合灸疗法
- 深圳市中小学生流感疫苗接种知情同意书
- 射线、直线和角(张冬梅)
- 数据、模型与决策(运筹学)课后习题和案例答案007
- 道路运输达标车辆核查记录表(货车)
- 《梁山伯与祝英台》PPT课件.ppt
- 大野耐一的十条训诫
评论
0/150
提交评论