




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京一零一中高一上数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,则下列关系中正确的是()A. B.C. D.2.设则()A. B.C. D.3.()A.1 B.C. D.4.主视图为矩形的几何体是()A. B.C. D.5.已知集合A={1,2,3,4},B={2,4,6,8},则AB中元素的个数为A.1 B.2C.3 D.46.已知函数的定义域为R,是偶函数,,在上单调递增,则不等式的解集为()A. B.C D.7.古希腊数学家阿基米德最为满意的一个数学发现是“圆柱容球”,即在球的直径与圆柱底面的直径和圆柱的高相等时,球的体积是圆柱体积的,且球的表面积也是圆柱表面积的.已知体积为的圆柱的轴截面为正方形.则该圆柱内切球的表面积为()A B.C. D.8.已知,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a9.下列函数中,既是奇函数又是定义域内的增函数为()A. B.C. D.10.下列命题中不正确的是()A.一组数据1,2,3,3,4,5的众数大于中位数B.数据6,5,4,3,3,3,2,2,2,1的分位数为5C.若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙D.为调查学生每天平均阅读时间,某中学从在校学生中,利用分层抽样的方法抽取初中生20人,高中生10人.经调查,这20名初中生每天平均阅读时间为60分钟,这10名高中生每天平均阅读时间为90分钟,那么被抽中的30名学生每天平均阅读时间为70分钟二、填空题:本大题共6小题,每小题5分,共30分。11.已知点为圆上的动点,则的最小值为__________12.如图,单位圆上有一点,点P以点P0为起点按逆时针方向以每秒弧度作圆周运动,5秒后点P的纵坐标y是_____________.13.计算_____________.14.已知函数若,则实数___________.15.天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景的摩天轮.如图,已知天津之眼的半径是55m,最高点距离地面的高度为120m,开启后按逆时针方向匀速转动,每30转动一圈.喜欢拍照的南鸢同学想坐在天津之眼上拍海河的景色,她在距离地面最近的舱位进舱.已知在距离地面超过92.5m的高度可以拍到最美的景色,则在天津之眼转动一圈的过程中,南鸢同学可以拍到最美景色的时间是_________分钟16.设定义在区间上的函数与的图象交于点,过点作轴的垂线,垂足为,直线与函数的图象交于点,则线段的长为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.18.已知函数为奇函数(1)求实数的值,判断函数的单调性并用定义证明;(2)求关于的不等式的解集19.已知函数,(1)试比较与的大小关系,并给出证明;(2)解方程:;(3)求函数,(是实数)的最小值20.已知定义在上的函数是奇函数(1)求函数的解析式;(2)判断的单调性,并用单调性定义证明21.已知函数(1)求函数的最小正周期、单调区间;(2)求函数在区间上的最小值和最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用元素与集合、集合与集合的关系可判断各选项的正误.详解】∵,∴,所以选项A、B、D错误,由空集是任何集合的子集,可得选项C正确.故选:C.【题目点拨】本题考查元素与集合、集合与集合关系的判断,属于基础题.2、A【解题分析】利用中间量隔开三个值即可.【题目详解】∵,∴,又,∴,故选:A【题目点拨】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.3、A【解题分析】直接利用诱导公式和两角和的正弦公式求出结果【题目详解】,故选:4、A【解题分析】根据几何体的特征,由主视图的定义,逐项判断,即可得出结果.【题目详解】A选项,圆柱的主视图为矩形,故A正确;B选项,圆锥的主视图为等腰三角形,故B错;C选项,棱锥的主视图为三角形,故C错;D选项,球的主视图为圆,故D错.故选:A.【题目点拨】本题主要考查简单几何体的正视图,属于基础题型.5、B【解题分析】由题意可得,故中元素的个数为2,所以选B.【名师点睛】集合基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图6、A【解题分析】由题意判断出函数关于对称,结合函数的对称性与单调性求解不等式.【题目详解】∵是偶函数,∴函数关于对称,∴,又∵在上单调递增,∴在单调递减,∴可化为,解得,∴不等式解集为.故选:A7、A【解题分析】由题目给出的条件可知,圆柱内切球的表面积圆柱表面积的,通过圆柱的体积求出圆柱底面圆半径和高,进而得出表面积,再计算内切球的表面积.【题目详解】设圆柱底面圆半径为,则圆柱高为,圆柱体积,解得,又圆柱内切球的直径与圆柱底面的直径和圆柱的高相等,所以内切球的表面积是圆柱表面积的,圆柱表面积为,所以内切球的表面积为.故选:A.8、A【解题分析】找中间量0或1进行比较大小,可得结果【题目详解】,所以,故选:A.【题目点拨】此题考查利用对数函数、指数函数的单调性比较大小,属于基础题9、D【解题分析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项.【题目详解】对于A,的定义域为,而,但,故在定义域上不是增函数,故A错误.对于B,的定义域为,它不关于原点对称,故该函数不是奇函数,故B错误.对于C,因为时,,故在定义域上不是增函数,故C错误.对于D,因为为幂函数且幂指数为3,故其定义域为R,且为增函数,而,故为奇函数,符合.故选:D.10、A【解题分析】由中位数以及众数判断A;由百分位数的定义计算判断B;计算乙组数据的方差判断C;计算被抽中的30名学生每天平均阅读时间从而判断D.【题目详解】对于A,中位数为和众数相等,故A错误;对于B,将该组数据从小到大排列为,,则该组数据的分位数为5,故B正确;对于C,乙组数据,方差为,则这两组数据中较稳定的是乙,故C正确;对于D,被抽中的30名学生每天平均阅读时间为,故D正确;故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、-4【解题分析】点为圆上的动点,所以.由,所以当时有最小值-4.故答案为-4.12、##【解题分析】根据单位圆上点的坐标求出,从而求出,从而求出点P的纵坐标.【题目详解】因为位于第一象限,且,故,所以,故,所以点P的纵坐标故答案为:13、【解题分析】将所给式子通分后进行三角变换可得结果【题目详解】由题意得故答案为:【题目点拨】易错点睛:本题考查三角恒等化简,本题的关键是通分后用正弦的差角公式,在由化成时注意角的顺序,这是容易出错的地方,考查运算能力,属于中档题.14、2【解题分析】先计算,再计算即得解.【题目详解】解:,所以.故答案为:215、10【解题分析】借助三角函数模型,设,以轴心为原点,与地面平行的直线为轴,建立直角坐标系,由题意求出解析式,再令,解三角不等式即可得答案.【题目详解】解:如图,设座舱距离地面最近的位置为点,以轴心为原点,与地面平行的直线为轴,建立直角坐标系.设时,南鸢同学位于点,以为终边的角为,根据摩天轮转一周大约需要,可知座舱转动的角速度约为,由题意,可得,,令,,可得,所以南鸢同学可以拍到最美景色的时间是分钟,故答案为:10.16、【解题分析】不妨设坐标为则的长为与的图象交于点,即解得则线段的长为点睛:本题主要考查的知识点是三角函数的图象及三角函数公式的应用.突出考查了数形结合的思想,同时也考查了考生的运算能力,本题的关键是解出是这三点的横坐标,而就是线段的长三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意,,故.将点的坐标代入函数的解析式可得,则,,故,故函数解析式为.(2)当时,,则,,所以函数的值域为.点睛:求函数f(x)=Asin(ωx+φ)在区间[a,b]上值域的一般步骤:第一步:三角函数式的化简,一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式第二步:由x的取值范围确定ωx+φ的取值范围,再确定sin(ωx+φ)(或cos(ωx+φ))的取值范围第三步:求出所求函数的值域(或最值)18、(1),函数为R上的增函数,证明见解析(2)【解题分析】(1)f(x)是R上奇函数,则f(0)=0,即可求出a;设R,且,作差化简判断大小关系,根据单调性的定义即可判断单调性;(2),根据(1)中单调性可去掉“f”,将问题转化为解三角不等式.【小问1详解】∵的定义域是R且是奇函数,∴,即.为R上的增函数,证明如下:任取R,且,则,∴为增函数,,∴∴,∴,即,∴在R上是增函数【小问2详解】∵,,又在R上是增函数,,即,,∴原不等式的解集为.19、(1)(2)或.(3)【解题分析】(1)与作差,配方后即可得;(2)原方程化为,设,可得,进而可得结果;(3)令,则,函数可化为,利用二次函数的性质分情况讨论,分别求出两段函数的最小值,比较大小后可得各种情况下函数,(是实数)的最小值.试题解析:(1)因为,所以(2)由,得,令,则,故原方程可化为,解得,或(舍去),则,即,解得或,所以或(3)令,则,函数可化为①若,当时,,对称轴,此时;当时,,对称轴,此时,故,②若,当,,对称轴,此时;当时,,对称轴,此时,故,③若,当时,,对称轴,此时;当时,,对称轴,此时,故,;④若,当时,,对称轴,此时;当时,,对称轴,此时,则时,,时,,故,⑤若,当时,,对称轴,此时;当时,,对称轴,此时,因为时,,故,综述:【方法点睛】本题主要考查指数函数的性质分段函数的解析式和性质、分类讨论思想及方程的根与系数的关系.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.20、(1);(2)在上是减函数,证明见解析【解题分析】(1)根据奇函数的定义即可求出结果;(2)设,且,然后与,作差,通过因式分解判断正负,然后根据单调性的概念即可得出结论.【题目详解】(1)∵是定义在上的奇函数,∴,∴,此时,,是奇函数,满足题意∴(2),在上是减函数设,且,则,∵,∴,,,∴,即,∴在上是减函数21、(1),增区间是,减区间是(2),【解题分析】(1)根据余弦函数的图象与性质,求出f(x)的最小正周期和单调增、减区间;(2)求出x∈[,]时2x的取值范围,从而求得f(x)的最大最小值【题目详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如何提高公共政策的透明度与参与度试题及答案
- 机电设备技术规范考试题
- 软件设计师考试准备过程的关键点试题及答案
- 解析西方政治制度的社会责任试题及答案
- 公共政策的效果与社会公正的关系研究考点及答案
- 计算机软件测试方法论的应用试题及答案
- 提升网络故障响应速度的措施与试题及答案
- 公共政策信息化的实践试题及答案
- 软件设计师考试职场新人的发展建议及试题与答案
- 高清晰度软件设计师考试试题及答案
- 2024年漳州市招聘中小学幼儿园教师真题
- 2025年道德与法治课程考试试卷及答案
- 2025河南中考:政治必背知识点
- 互联网公司网络安全工程师入职培训
- 2025年中南出版传媒集团湖南教育出版社分公司招聘笔试参考题库含答案解析
- 广东惠州事业单位招聘医疗卫生岗考试模拟题带答案2025年
- 车辆抵顶合同协议
- 2025春 新人教版美术小学一年级下册致敬平凡
- 学美容管理制度
- 2025年河南省郑州市中考一模英语试题
- GB/T 13511.2-2025配装眼镜第2部分:渐变焦定配眼镜
评论
0/150
提交评论