江苏省苏州市景范中学2024届数学高一上期末联考模拟试题含解析_第1页
江苏省苏州市景范中学2024届数学高一上期末联考模拟试题含解析_第2页
江苏省苏州市景范中学2024届数学高一上期末联考模拟试题含解析_第3页
江苏省苏州市景范中学2024届数学高一上期末联考模拟试题含解析_第4页
江苏省苏州市景范中学2024届数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市景范中学2024届数学高一上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,以为最小正周期且在区间上单调递减的是()A. B.C. D.2.已知函数,若关于的方程有四个不同的实数解,且满足,则下列结论正确的是()A. B.C. D.3.已知,则()A. B.1C. D.24.设命题,则命题p的否定为()A. B.C. D.5.如图,点,,分别是正方体的棱,的中点,则异面直线和所成的角是()A. B.C. D.6.已知函数满足,则()A. B.C. D.7.设,,,则,,的大小关系为()A. B.C. D.8.如图是函数在一个周期内的图象,则其解析式是()A. B.C. D.9.若角的终边和单位圆的交点坐标为,则()A. B.C. D.10.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是()A.2 B.1+C.2+ D.1+二、填空题:本大题共6小题,每小题5分,共30分。11.______.12.已知,若,则__________.13.若在内有两个不同的实数值满足等式,则实数k的取值范围是_______14.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是________.15.已知集合.(1)集合A的真子集的个数为___________;(2)若,则t的所有可能的取值构成的集合是___________.16.已知函数,且关于的方程有且仅有一个实数根,那实数的取值范围为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.我们知道,指数函数(,且)与对数函数(,且)互为反函数.已知函数,其反函数为.(1)求函数,的最小值;(2)对于函数,若定义域内存在实数,满足,则称为“L函数”.已知函数为其定义域上的“L函数”,求实数的取值范围.18.已知,、、在同一个平面直角坐标系中的坐标分别为、、(1)若,求角的值;(2)当时,求的值19.在三棱锥中,,,O是线段AC的中点,M是线段BC的中点.(1)求证:PO⊥平面ABC;(2)求直线PM与平面PBO所成的角的正弦值.20.已知函数(1)求函数的最小正周期;(2)求函数在上的最大值和最小值,并求函数取得最大值和最小值时的自变量的值21.已知向量=(3,2),=(-1,2),=(4,1)(1)若=m+n,求m,n的值;(2)若向量满足(-)(+),|-|=2,求的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据正弦、余弦、正切函数的周期性和单调性逐一判断即可得出答案.【题目详解】解:对于A,函数的最小正周期为,不符合题意;对于B,函数的最小正周期为,且在区间上单调递减,符合题意;对于C,函数的最小正周期为,且在区间上单调递增,不符合题意;对于D,函数的最小正周期为,不符合题意.故选:B.2、D【解题分析】先作函数和的图象,利用特殊值验证A错误,再结合对数函数的性质及二次函数的对称性,计算判断BCD的正误即可.【题目详解】作函数和的图象,如图所示:当时,,即,解得,此时,故A错误;结合图象知,,当时,可知是方程,即的二根,故,,端点取不到,故BC错误;当时,,即,故,即,所以,故,即,所以,故D正确.故选:D.【题目点拨】方法点睛:已知函数有零点个数求参数值(取值范围)或相关问题,常先分离参数,再作图象,将问题转化成函数图象的交点问题,利用数形结合法进行分析即可.3、D【解题分析】根据指数和对数的关系,将指数式化为对数式,再根据换底公式及对数的运算法则计算可得;【题目详解】解:,,,,故选:D4、C【解题分析】由全称命题的否定是特称命题即可得解.【题目详解】根据全称命题的否定是特称命题可知,命题的否定命题为,故选:C5、C【解题分析】通过平移的方法作出直线和所成的角,并求得角的大小.【题目详解】依题意点,,分别是正方体的棱,的中点,连接,结合正方体的性质可知,所以是异面直线和所成的角,根据正方体的性质可知,是等边三角形,所以,所以直线和所成的角为.故选:C【题目点拨】本小题主要考查线线角的求法,属于基础题.6、D【解题分析】由已知可得出,利用弦化切可得出关于的方程,结合可求得的值.【题目详解】因为,且,则,,可得,解得.故选:D7、D【解题分析】根据指数函数和对数函数的单调性,再结合0,1两个中间量即可求得答案.【题目详解】因为,,,所以.故选:D.8、B【解题分析】通过函数的图象可得到:A=3,,,则,然后再利用点在图象上求解.,【题目详解】由函数的图象可知:A=3,,,所以,又点在图象上,所以,即,所以,即,因为,所以所以故选:B【题目点拨】本题主要考查利用三角函数的图象求解析式,还考查了运算求解的能力,属于中档题.9、C【解题分析】直接利用三角函数的定义可得.【题目详解】因为角的终边和单位圆的交点坐标为,所以由三角函数定义可得:.故选:C10、B【解题分析】根据圆心到直线的距离加上圆的半径即为圆上点到直线距离的最大值求解出结果.【题目详解】因为圆心为,半径,直线的一般式方程为,所以圆上点到直线的最大距离为:,故选:B【题目点拨】本题考查圆上点到直线的距离的最大值,难度一般.圆上点到直线的最大距离等于圆心到直线的距离加上圆的半径,最小距离等于圆心到直线的距离减去半径.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】利用两角和的正切公式进行化简求值.【题目详解】由于,所以,即,所以故答案为:【题目点拨】本小题主要考查两角和的正切公式,属于中档题.12、【解题分析】由已知先求得,再求得,代入可得所需求的函数值.【题目详解】由已知得,即,所以,而,故答案为.【题目点拨】本题考查函数求值中的给值求值问题,关键在于由已知的函数值求得其数量关系,代入所需求的函数解析式中,可得其值,属于基础题.13、【解题分析】讨论函数在的单调性即可得解.【题目详解】函数,时,单调递增,时,单调递减,,,,所以在内有两个不同的实数值满足等式,则,所以.故答案为:14、【解题分析】长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【题目详解】长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:,则这个球的表面积是:故答案为:【题目点拨】本题考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力15、①.15②.【解题分析】(1)根据集合真子集的计算公式即可求解;(2)根据集合的包含关系即可求解.【题目详解】解:(1)集合A的真子集的个数为个,(2)因为,又,所以t可能的取值构成的集合为,故答案为:15;.16、【解题分析】利用数形结合的方法,将方程根的问题转化为函数图象交点的问题,观察图象即可得到结果.【题目详解】作出的图象,如下图所示:∵关于的方程有且仅有一个实数根,∴函数的图象与有且只有一个交点,由图可知,则实数的取值范围是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)【解题分析】(1)利用换元法令,可得所求为关于p的二次函数,根据二次函数的性质,分析讨论,即可得答案.(2)根据题意,分别讨论在、和上存在实数,满足题意,根据所给方程,代入计算,结合函数单调性,分析即可得答案.【小问1详解】由题意得所以,,令,设则为开口向上,对称轴为的抛物线,当时,在上为单调递增函数,所以的最小值为;当时,在上单调递减,在上单调递增,所以的最小值为;当时,在上为单调递减函数,所以的最小值为;综上,当时,的最小值为,当时,的最小值为,当时,的最小值为【小问2详解】①设在上存在,满足,则,令,则,当且仅当时取等号,又,所以,即,所以,所以所以②设存在,满足,则,即有解,因为在上单调递减,所以,同理当在存在,满足时,解得,所以实数的取值范围【题目点拨】解题的关键是理解新定义,并根据所给定义,代入计算,结合函数单调性及函数存在性思想,进行求解,属难题18、(1)(2)-【解题分析】⑴首先可以通过、、写出和,然后通过化简可得,最后通过即可得出角的值;⑵首先可通过化简得到,再通过化简得到,最后对化简即可得到的值【题目详解】⑴已知、、,所以,,因为,所以化简得,即,因为,所以;⑵由可得,化简得,,所以,所以,综上所述,【题目点拨】本题考查了三角函数以及向量的相关性质,主要考查了三角恒等变换的相关性质以及向量的运算的相关性质,考查了计算能力,考查了化归与转化思想,锻炼了学生对于公式的使用,是难题19、(1)证明见解析;(2)【解题分析】(1)利用勾股定理得出线线垂直,结合等边三角形的特点,再次利用勾股定理得出线线垂直,进而得出线面垂直;(2)根据线面垂直面,得出线和面的夹角,从而得出线面角的正弦值.【题目详解】(1)由,有,从而有,且又是边长等于的等边三角形,.又,从而有又平面.(2)过点作交于点,连.由(1)知平面,得,又平面是直线与平面所成的角.由(1),从而为线段的中点,,,所以直线与平面所成的角的正弦值为20、(1);(2)【解题分析】【试题分析】(1)先运用三角变换公式化简,再用周期公式求解;(2)借助所给定义域内的变量的取值范围结合三角函数的图象探求..(1).(2).点睛:本题旨在考查二倍角正弦、余弦公式、两角和差的正弦公式以及正弦函数的图象和性质等有关知识的综合运用.第一问时,先借助二倍角的正弦、余弦公式及两角和的正弦公式将其化简,再运用周期公式求解;解答第二问时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论