陕西省汉滨区2024届高一上数学期末经典模拟试题含解析_第1页
陕西省汉滨区2024届高一上数学期末经典模拟试题含解析_第2页
陕西省汉滨区2024届高一上数学期末经典模拟试题含解析_第3页
陕西省汉滨区2024届高一上数学期末经典模拟试题含解析_第4页
陕西省汉滨区2024届高一上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省汉滨区2024届高一上数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.(程序如下图)程序的输出结果为A.3,4 B.7,7C.7,8 D.7,112.设奇函数在上单调递增,且,则不等式的解集是()A B.或C. D.或3.已知是锐角,那么是()A.第一象限角 B.第二象限角C.小于180°的正角 D.第一或第二象限角4.的值是()A. B.C. D.5.函数是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数6.已知p:﹣2<x<2,q:﹣1<x<2,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.8.已知命题:,,则()A.:, B.:,C.:, D.:,9.若偶函数在区间上单调递增,且,则不等式的解集是()A. B.C. D.10.已知幂函数的图象过点,则等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数,其中,,的图象如图所示,求的解析式____12.我国采用的“密位制”是6000密位制,即将一个圆周分为6000等份,每一个等份是一个密位,那么120密位等于______rad13.函数的图象恒过定点,点在幂函数的图象上,则=____________14.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正确命题的个数是________15.下列四个命题:①函数与的图象相同;②函数的最小正周期是;③函数的图象关于直线对称;④函数在区间上是减函数其中正确的命题是__________(填写所有正确命题的序号)16.已知两定点,,如果动点满足,则点的轨迹所包围的图形的面积等于__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数的定义域为,求的取值范围;(2)设函数.若对任意,总有,求的取值范围.18.已知.(1)求的值;(2)求的值.19.已知圆:关于直线:对称的图形为圆.(1)求圆的方程;(2)直线:,与圆交于,两点,若(为坐标原点)面积为,求直线的方程.20.已知函数为奇函数(1)求实数的值,判断函数的单调性并用定义证明;(2)求关于的不等式的解集21.已知.(1)若关于x的不等式的解集为区间,求a的值;(2)设,解关于x的不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】∵变量初始值X=3,Y=4,∴根据X=X+Y得输出的X=7.又∵Y=X+Y,∴输出的Y=11.故选D.2、D【解题分析】由奇偶性可将所求不等式化为;利用奇偶性可判断出单调性和,分别在和的情况下,利用单调性解得结果.【题目详解】为奇函数,;又在上单调递增,,在上单调递增,;,即;当时,,;当时,,;的解集为或.故选:D.【题目点拨】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.3、C【解题分析】由题知,故,进而得答案.【题目详解】因为是锐角,所以,所以,满足小于180°的正角.其中D选项不包括,故错误.故选:C4、C【解题分析】根据诱导公式即可求出【题目详解】故选:C5、A【解题分析】由题可得,根据正弦函数的性质即得.【题目详解】∵函数,∴函数为最小正周期为的奇函数.故选:A.6、B【解题分析】将相互推导,根据能否推导的情况判断出充分、必要条件.【题目详解】已知p:﹣2<x<2,q:﹣1<x<2;∴q⇒p;但p推不出q,∴p是q的必要非充分条件故选:B【题目点拨】本小题主要考查充分、必要条件的判断,属于基础题.7、D【解题分析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.8、C【解题分析】根据全称命题的否定是特称命题进行否定即可得答案.【题目详解】解:因为全称命题的否定为特称命题,所以命题:,的否定为::,.故选:C.9、D【解题分析】由偶函数定义可确定函数在上的单调性,由单调性可解不等式.【题目详解】由于函数是偶函数,在区间上单调递增,且,所以,且函数在上单调递减.由此画出函数图象,如图所示,由图可知,的解集是.故选:D.【题目点拨】本题考查函数的奇偶性与单调性,属于基础题.10、A【解题分析】根据幂函数的定义,结合代入法进行求解即可.【题目详解】因为是幂函数,所以,又因为函数的图象过点,所以,因此,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】首先根据函数的最高点与最低点求出A,b,然后由图像求出函数周期从而计算出,再由函数过点求出.【题目详解】,,,解得,则,因为函数过点,所以,,解得因为,所以,.故答案为:【题目点拨】本题考查由图像确定正弦型函数的解析式,第一步通过图像的最值确定A,b的值,第二步通过周期确定的值,第三步通过最值点或者非平衡位置的点以及12、##【解题分析】根据已知定义,结合弧度制的定义进行求解即可.【题目详解】设120密位等于,所以有,故答案为:13、【解题分析】因为函数图象恒过定点,则可之令2x-3=1,x=2,函数值为4,故过定点(2,4),然后根据且点在幂函数的图象上,设,故可知=9,故答案为9.考点:对数函数点评:本题考查了对数函数图象过定点(1,0),即令真数为1求对应的x和y,则是所求函数过定点的坐标14、3【解题分析】如图所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC⊂平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案为:3.15、①②④【解题分析】首先需要对命题逐个分析,利用三角函数的相关性质求得结果.【题目详解】对于①,,所以两个函数的图象相同,所以①对;对于②,,所以最小正周期是,所以②对;对于③,因为,所以,,,因为,所以函数的图象不关于直线对称,所以③错,对于④,,当时,,所以函数在区间上是减函数,所以④对,故答案为①②④【题目点拨】该题考查的是有关三角函数的性质,涉及到的知识点有利用诱导公式化简函数解析式,余弦函数的周期,正弦型函数的单调性,属于简单题目.16、4π【解题分析】设点的坐标为(则,即(以点的轨迹是以为圆心,2为半径的圆,所以点的轨迹所包围的图形的面积等于4π.即答案为4π三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)等价于在上恒成立.解得的取值范围是;(2)等价于在上恒成立,所以的取值范围是.试题解析:(1)函数的定义域为,即在上恒成立.当时,恒成立,符合题意;当时,必有.综上,的取值范围是.(2)∵,∴.对任意,总有,等价于在上恒成立在上恒成立.设,则(当且仅当时取等号).,在上恒成立.当时,显然成立当时,在上恒成立.令,.只需.∵在区间上单调递增,∴.令.只需.而,且∴.故.综上,的取值范围是.18、(1)3,(2)【解题分析】(1)由正切的两角和公式,化简求值即可;(2)先利用诱导公式即二倍角公式化简求值即可.试题解析:(1),(2).19、(1),(2)【解题分析】(1)设圆的圆心为,则由题意得,求出的值,从而可得所求圆的方程;(2)设圆心到直线:的距离为,原点到直线:的距离为,则有,,再由的面积为,列方程可求出的值,进而可得直线方程【题目详解】解:(1)设圆的圆心为,由题意可得,则的中点坐标为,因为圆:关于直线:对称的图形为圆,所以,解得,因为圆和圆半径相同,即,所以圆的方程为,(2)设圆心到直线:的距离为,原点到直线:的距离为,则,,所以所以,解得,因为,所以,所以直线的方程为【题目点拨】关键点点睛:此题考查圆的方程的求法,考查直线与圆的位置关系,解题的关键是利用点到直线的距离公式表示出圆心到直线的距离为,原点到直线的距离为,再表示出,从而由的面积为,得,进而可求出的值,问题得到解决,考查计算能力,属于中档题20、(1),函数为R上的增函数,证明见解析(2)【解题分析】(1)f(x)是R上奇函数,则f(0)=0,即可求出a;设R,且,作差化简判断大小关系,根据单调性的定义即可判断单调性;(2),根据(1)中单调性可去掉“f”,将问题转化为解三角不等式.【小问1详解】∵的定义域是R且是奇函数,∴,即.为R上的增函数,证明如下:任取R,且,则,∴为增函数,,∴∴,∴,即,∴在R上是增函数【小问2详解】∵,,又在R上是增函数,,即,,∴原不等式的解集为.21、(1);(2)答案见解析.【解题分析】(1)先将分式不等式转化成一元二次不等式,再

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论