2024届湖南省长沙市一中学教育集团数学九上期末达标检测试题含解析_第1页
2024届湖南省长沙市一中学教育集团数学九上期末达标检测试题含解析_第2页
2024届湖南省长沙市一中学教育集团数学九上期末达标检测试题含解析_第3页
2024届湖南省长沙市一中学教育集团数学九上期末达标检测试题含解析_第4页
2024届湖南省长沙市一中学教育集团数学九上期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省长沙市一中学教育集团数学九上期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A. B.C. D.2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A. B. C. D.3.如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为()A.5π B.12.5π C.20π D.25π4.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面.则这个圆锥的底面圆的半径为()A. B.1 C. D.25.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A. B.C. D.6.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个 B.2个 C.3个 D.4个7.下列各数中是无理数的是()A.0 B. C. D.0.58.已知二次函数和一次函数的图象如图所示,下面四个推断:①二次函数有最大值②二次函数的图象关于直线对称③当时,二次函数的值大于0④过动点且垂直于x轴的直线与的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是或,其中正确的有()A.1个 B.2个 C.3个 D.4个9.在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球()A.21个 B.14个 C.20个 D.30个10.相邻两根电杆都用锅索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面()A.2.4米B.8米C.3米D.必须知道两根电线杆的距离才能求出点P离地面距离11.如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是()A.2 B.3 C.4 D.512.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件 B.随机事件 C.确定事件 D.不可能事件二、填空题(每题4分,共24分)13.如图,在中,,于,已知,则__________.14.如图,为的直径,弦于点,已知,,则的半径为______.15.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.16.已知二次函数y=x2﹣4x+3,当a≤x≤a+5时,函数y的最小值为﹣1,则a的取值范围是_______.17.已知函数,如果,那么___________.18.如图,菱形的边长为4,,E为的中点,在对角线上存在一点,使的周长最小,则的周长的最小值为__________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象分别相交于第一、三象限内的,两点,与轴交于点.(1)求该反比例函数和一次函数的解析式;(2)在轴上找到一点使最大,请直接写出此时点的坐标.20.(8分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C(1)求证:∠CBP=∠ADB(2)若OA=2,AB=1,求线段BP的长.21.(8分)解方程:(1)x2+4x﹣21=0(2)x2﹣7x﹣2=022.(10分)如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.23.(10分)2019年9月30日,由著名导演李仁港执导的电影《攀登者》在各大影院上映后,好评不断,小亮和小丽都想去观看这部电影,但是只有一张电影票,于是他们决定采用模球的办法决定胜负,获胜者去看电影,游戏规则如下:在一个不透明的袋子中装有编号1-4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字,若两次数字之和大于5,则小亮获胜,若两次数字之和小于5,则小丽获胜.(1)请用列表或画树状图的方法表示出随机摸球所有可能的结果;(2)分别求出小亮和小丽获胜的概率,并判断这种游戏规则对两人公平吗?24.(10分)如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,求∠C.25.(12分)为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?26.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,求sinB的值.

参考答案一、选择题(每题4分,共48分)1、A【分析】设半径OA绕轴心旋转的角度为n°,根据弧长公式列出方程即可求出结论.【题目详解】解:设半径OA绕轴心旋转的角度为n°根据题意可得解得n=54即半径OA绕轴心旋转的角度为54°故选A.【题目点拨】此题考查的是根据弧长,求圆心角的度数,掌握弧长公式是解决此题的关键.2、D【分析】随机事件A的概率事件A可能出现的结果数÷所有可能出现的结果数.【题目详解】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率,故选D.【题目点拨】本题考查了概率,熟练掌握概率公式是解题的关键.3、D【分析】首先根据圆周角的度数求得圆心角的度数,然后代入扇形的面积公式求解即可.【题目详解】解:∵∠ACB=45°,∴∠AOB=90°,∵半径为10,∴扇形AOB的面积为:=25π,故选:D.【题目点拨】考查了圆周角定理及扇形的面积公式,解题的关键是牢记扇形的面积公式并正确的运算.4、A【分析】根据扇形的弧长公式求出弧长,根据圆锥的底面周长等于它的侧面展开图的弧长求出半径.【题目详解】解:设圆锥底面的半径为r,

扇形的弧长为:,∵圆锥的底面周长等于它的侧面展开图的弧长,

∴根据题意得2πr=,解得:r=,故选A.【题目点拨】本题考查了圆锥的计算,掌握弧长公式、周长公式和圆锥与扇形的对应关系是解题的关键.5、D【分析】可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【题目详解】A.一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B.由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C.由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D.由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选:D.【题目点拨】本题考查了抛物线和直线的性质,用假设法来解答这种数形结合题是一种很好的方法.6、C【解题分析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选C.7、C【分析】根据无理数的定义,分别进行判断,即可得到答案.【题目详解】解:根据题意,是无理数;0,,0.5是有理数;故选:C.【题目点拨】本题考查了无理数的定义,解题的关键是熟记无理数的定义进行解题.8、B【分析】根据函数的图象即可得到结论.【题目详解】解:∵二次函数y1=ax2+bx+c(a≠0)的图象的开口向上,

∴二次函数y1有最小值,故①错误;

观察函数图象可知二次函数y1的图象关于直线x=-1对称,故②正确;

当x=-2时,二次函数y1的值小于0,故③错误;

当x<-3或x>-1时,抛物线在直线的上方,

∴m的取值范围为:m<-3或m>-1,故④正确.

故选B.【题目点拨】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.9、A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【题目详解】由题意可得:解得:x=21,经检验,x=21是原方程的解故红球约有21个,故选:A.【题目点拨】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.10、A【分析】如图,作PE⊥BC于E,由CD//AB可得△APB∽△CPD,可得对应高CE与BE之比,根据CD∥PE可得△BPE∽△BDC,利用对应边成比例可得比例式,把相关数值代入求解即可.【题目详解】如图,作PE⊥BC于E,∵CD∥AB,∴△APB∽△CPD,∴,∴,∵CD∥PE,∴△BPE∽△BDC,∴,∴,解得:PE=2.1.故选:A.【题目点拨】本题考查相似三角形的应用,平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;正确作出辅助线构建相似三角形并熟练掌握相似三角形的判定定理是解题关键.11、B【分析】由一次函数的关系式可以求出与x轴和y轴的交点坐标,即求出OA,OB的长,由正方形的性质,三角形全等可以求出DE、AE、CF、BF的长,进而求出G点的坐标,最后求出CG的长就是n的值.【题目详解】如图过点D、C分别做DE⊥x轴,CF⊥y轴,垂足分别为E,F.CF交反比例函数的图像于点G.把x=0和y=0分别代入y=-4x+4得y=4和x=1∴A(1,0),B(0,4)∴OA=1,OB=4由ABCD是正方形,易证△AOB≌△DEA≌△BCF(AAS)∴DE=BF=OA=1,AE=CF=OB=4∴D(5,1),F(0,5)把D点坐标代入反比例函数y=,得k=5把y=5代入y=,得x=1,即FG=1CG=CF-FG=4-1=3,即n=3故答案为B.【题目点拨】本题考查了反比例函数的图像上的坐标特征,正方形的性质,以及全等三角形判断和性质,根据坐标求出线段长是解决问题的关键.12、B【题目详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.二、填空题(每题4分,共24分)13、【分析】根据,可设AC=4x,BC=5x,利用勾股定理可得AB=3x,则.【题目详解】在Rt△ABC中,∵∴设AC=4x,BC=5x∴∴故答案为:.【题目点拨】本题考查求正切值,熟练掌握三角函数的定义是解题的关键.14、1【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【题目详解】解:连接OD,

∵CD⊥AB于点E,∴DE=CE=CD=×8=4,∠OED=90°,

由勾股定理得:OD=,即⊙O的半径为1.

故答案为:1.【题目点拨】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.15、1.【解题分析】根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知,即,解得AM=1.∴小明的影长为1米.16、﹣3≤a≤1【分析】求得对称轴,然后分三种情况讨论即可求得.【题目详解】解:∵二次函数y=x1﹣4x+3=(x﹣1)1﹣1,∴对称轴为直线x=1,当a<1<a+5时,则在a≤x≤a+5范围内,x=1时有最小值﹣1,当a≥1时,则在a≤x≤a+5范围内,x=a时有最小值﹣1,∴a1﹣4a+3=﹣1,解得a=1,当a+5≤1时,则在a≤x≤a+5范围内,x=a+5时有最小值﹣1,∴(a+5)1﹣4(a+5)+3=﹣1,解得a=﹣3,∴a的取值范围是﹣3≤a≤1,故答案为:﹣3≤a≤1.【题目点拨】本题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.17、1【分析】把x=2代入函数关系式即可求得.【题目详解】f(2)=3×22-2×2-1=1,

故答案为1.【题目点拨】此题考查二次函数图象上点的坐标特征,解题关键在于掌握函数图象上点的坐标适合解析式.18、+2【分析】连接DE,因为BE的长度固定,所以要使△PBE的周长最小,只需要PB+PE的长度最小即可.【题目详解】解:连结DE.∵BE的长度固定,∴要使△PBE的周长最小只需要PB+PE的长度最小即可,∵四边形ABCD是菱形,∴AC与BD互相垂直平分,∴P′D=P′B,∴PB+PE的最小长度为DE的长,∵菱形ABCD的边长为4,E为BC的中点,∠DAB=60°,∴△BCD是等边三角形,又∵菱形ABCD的边长为4,∴BD=4,BE=2,DE=,∴△PBE的最小周长=DE+BE=,故答案为:.【题目点拨】本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.三、解答题(共78分)19、(1),;(2)【分析】(1)利用待定系数法由点A坐标可求反比例函数,然后计算出B的坐标,于是可求一次函数的解析式;

(2)根据一次函数与y轴的交点P,此交点即为所求.【题目详解】解:(1)把代入,可得,反比例函数的解析式为把点代入,可得,.把,代入,可得解得一次函数的解析式为;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,

∴一次函数与y轴的交点为P(0,2),

此时,PB-PC=BC最大,P即为所求.【题目点拨】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,正确掌握反比例函数的性质是解题的关键.20、(1)证明见解析;(2)BP=1.【解题分析】分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.详(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴,即,∴BP=1.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.21、(1)x1=3,x2=﹣7;(2)x1=,x2=【分析】(1)根据因式分解法解方程即可;(2)根据公式法解方程即可.【题目详解】解:(1)x2+4x﹣21=0(x﹣3)(x+7)=0解得x1=3,x2=﹣7;(2)x2﹣7x﹣2=0∵△=49+8=57∴x=解得x1=,x2=.【题目点拨】本题考查了解一元二次方程,其方法有直接开平方法、公式法、配方法、因式分解法,根据一元二次方程特点选择合适的方法是解题的关键.22、(1)AF=AE;(2)AF=AE,证明详见解析;(3)结论不变,AF=AE,理由详见解析.【分析】(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可.【题目详解】解:(1)如图①中,结论:AF=AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.(2)如图②中,结论:AF=AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图③中,结论不变,AF=AE.理由:连接EF,延长FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.【题目点拨】本题考查四边形综合题,综合性较强.23、(1)见解析(2),;公平【分析】(1)根据题意,列出树状图,即可得到答案;(2)根据概率公式,分别求出小亮和小丽获胜的概率,即可.【题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论